Résumés
Résumé
À l’interface du vivant et de l’inerte, se développe un ensemble de nouvelles technologies regroupées sous le terme générique de biopuces. Grâce à la miniaturisation, nous pouvons imaginer que, demain, de nombreuses études biologiques et médicales se feront avec des biopuces qui permettront d’accroître de plusieurs ordres de grandeur le parallélisme des analyses, les vitesses de réaction des tests et leur débit, tout en réduisant les coûts. Cette évolution a démarré avec l’apparition des puces à ADN et se poursuit aujourd’hui avec, entre autres, les puces à cellules qui permettent d’accélérer considérablement l’étude des gènes de fonctions inconnues et leurs implications potentielles dans différentes maladies. Bien que la technologie en soit encore à ses prémices, il est vraisemblable que les puces à cellules feront évoluer la biologie et la médecine de manière significative.
Summary
With the complete sequencing of the human genome, research priorities have shifted from the identification of genes to the elucidation of their function. Methods currently used by scientists to characterize gene function, such as knock-out mice, are based upon loss of protein function and analysis of the resulting phenotypes to infer a potential role for the protein under scrutiny. Until now, these methods have been successful but time consuming and only a few genes at a time could be analyzed. Cell microarrays allow to simultaneously transfect thousands of different nucleic acid molecules, RNA or DNA, into adherent cells. It is then possible to analyze a large pallet of resulting phenotypes in clusters of transfected cells. We are currently manufacturing cell microarrays with collections of full-length cDNA cloned in expression vectors (gain of function analyses) or siRNA (loss of function studies) to unravel function of genes involved in differentiation and proliferation of human cells. Although there are still some technological difficulties to overcome, the potential for cell microarrays to speed up functional exploration of genomes is very promising.
Parties annexes
Références
- 1. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science 1995 ; 270 : 467-70.
- 2. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays.Nat Biotechnol 1996 ; 14 : 1675-80.
- 3. Nguyen C, Rocha D, Granjeaud S, et al. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones.Genomics 1995 ; 29 : 207-16.
- 4. Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs.Nature 2001 ; 411 : 107-10.
- 5. Baghdoyan S, Roupioz Y, Pitaval A, et al. Quantitative analysis of highly parallel transfection in cell microarrays.Nucleic Acids Res 2004 ; 32 : E77.
- 6. Grimm S, Kachel V. Robotic high-throughput assay for isolating apoptosis-inducing genes.Biotechniques 2002 ; 32 : 670-2, 674-7.
- 7. Michiels F, van Es H, van Rompaey L, et al. Arrayed adenoviral expression libraries for functional screening.Nat Biotechnol 2002 ; 20 : 1154-7.
- 8. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature 1998 ; 391 : 806-11.
- 9. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 2001 ; 411 : 494-8.
- 10. Silva JM, Mizuno H, Brady A, et al. RNA interference microarrays : high-throughput loss-of-function genetics in mammalian cells.Proc Natl Acad Sci USA 2004 ; 101 : 6548-52.
- 11. Mousses S, Caplen NJ, Cornelison R, et al. RNAi microarray analysis in cultured mammalian cells.Genome Res 2003 ; 13 : 2341-7.
- 12. Kumar R, Conklin DS, Mittal V. High-throughput selection of effective RNAi probes for gene silencing.Genome Res 2003 ; 13 : 2333-40.