Résumés
Résumé
Les cellules souches embryonnaires pluripotentes (ES) ont des propriétés de prolifération et de différenciation qui font d’elles un outil prometteur pour la thérapie cellulaire. Malgré la légitime controverse sur les nombreuses questions éthiques que cette technologie suscite, et en dépit de ses potentiels dans des domaines aussi variables que la thérapie cardiaque, pulmonaire ou hépatique, ou la régénération osseuse et articulaire, c’est dans le traitement des maladies cérébrales que la technique ouvre les perspectives les plus intéressantes. De très nombreux travaux réalisés sur les cellules ES rapportent une régénération du cerveau et de la moelle épinière chez des rongeurs et la réparation des problèmes cognitifs causés lors de dommages apportés aux tissus lésés. Cet article offre une synthèse des avancées récentes dans le domaine de la manipulation des cellules souches (murines) en vue de sélectionner des populations de neurones, astrocytes et oligodendrocytes. En parallèle, nous mettons l’accent sur les similitudes frappantes qui existent dans les programmes génétiques mis en oeuvre au cours du développement embryonnaire in utero et au cours de la différenciation in vitro des cellules.
Summary
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.
Parties annexes
Références
- 1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981 ; 292 : 154-6.
- 2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981 ; 78 : 7634-8.
- 3. Gerecht-Nir S, Itskovitz-Eldor J. Cell therapy using human embryonic stem cells. Transpl Immunol 2004 ; 12 : 203-9.
- 4. Fluckiger AC, Dehay C, Savatier P. Embryonic stem cells and cell replacement therapies in the nervous system. Med Sci (Paris) 2003 ; 19 : 699-708.
- 5. McKay RD. Stem cell biology and neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 2004 ; 359 : 851-6.
- 6. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997 ; 94 : 3801-4.
- 7. Li M, Sendtner M, Smith A. Essential function of LIF receptor in motor neurons. Nature 1995 ; 378 : 724-7.
- 8. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992 ; 359 : 76-9.
- 9. O’Shea KS. Self-renewal versus differentiation of mouse embryonic stem cells. Biol Reprod 2004 ; 71 : 1755-65.
- 10. Nichols J. Introducing embryonic stem cells. Curr Biol 2001 ; 11 : R503-5.
- 11. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003 ; 113 : 631-42.
- 12. Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 2001 ; 26 : 137-48.
- 13. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998 ; 95 : 379-91.
- 14. Hatano SY, Tada M, Kimura H, et al. Pluripotential competence of cells associated with Nanog activity. Mech Dev 2005 ; 122 : 67-79.
- 15. Shimozaki K, Nakashima K, Niwa H, et al. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development 2003 ; 130 : 2505-12.
- 16. Panchision DM, McKay RD. The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 2002 ; 12 : 478-87.
- 17. Jessell TM. Neuronal specification in the spinal cord : inductive signals and transcriptional codes. Nat Rev Genet 2000 ; 1 : 20-9.
- 18. Wilson SI, Edlund T. Neural induction : toward a unifying mechanism. Nat Neurosci 2001 ; 4 (suppl) : 1161-8.
- 19. Tropepe V, Hitoshi S, Sirard C, et al. Direct neural fate specification from embryonic stem cells : a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001 ; 30 : 65-78.
- 20. Czyz J, Wobus A. Embryonic stem cell differentiation : the role of extracellular factors. Differentiation 2001 ; 68 : 167-74.
- 21. Coucouvanis E, Martin GR. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 1999 ; 126 : 535-46.
- 22. Aubert J, Dunstan H, Chambers I, et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 2002 ; 20 : 1240-5.
- 23. Kielman MF, Rindapaa M, Gaspar C, et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet 2002 ; 32 : 594-605.
- 24. Otero JJ, Fu W, Kan L, et al. Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 2004 ; 131 : 3545-57.
- 25. Ying QL, Stavridis M, Griffiths D, et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003 ; 21 : 183-6.
- 26. Gottlieb DI. Large-scale sources of neural stem cells. Annu Rev Neurosci 2002 ; 25 : 381-407.
- 27. Okada Y, Shimazaki T, Sobue G, et al. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 2004 ; 275 : 124-42.
- 28. Ruiz I, Altaba A, Stecca B, Sanchez P. Hedgehog-Gli signaling in brain tumors : stem cells and paradevelopmental programs in cancer. Cancer Lett 2004 ; 204 : 145-57.
- 29. Lang KJ, Rathjen J, Vassilieva S, et al. Differentiation of embryonic stem cells to a neural fate : a route to re-building the nervous system ? J Neurosci Res 2004 ; 76 : 184-92.
- 30. Mizuseki K, Sakamoto T, Watanabe K, et al. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 2003 ; 100 : 5828-33.
- 31. Wichterle H, Lieberam I, Porter JA, et al. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002 ; 110 : 385-97.
- 32. Shiotsugu J, Katsuyama Y, Arima K, et al. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 2004 ; 131 : 2653-67.
- 33. Altmann CR, Bell E, Sczyrba A, et al. Microarray-based analysis of early development in Xenopus laevis. Dev Biol 2001 ; 236 : 64-75.
- 34. Maye P, Becker S, Kasameyer E, et al. Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech Dev 2000 ; 94 : 117-32.
- 35. Maye P, Becker S, Siemen H, et al. Hedgehog signaling is required for the differentiation of ES cells into neurectoderm. Dev Biol 2004 ; 265 : 276-90.
- 36. Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003 ; 21 : 1200-7.
- 37. Simon HH, Bhatt L, Gherbassi D, et al. Midbrain dopaminergic neurons : determination of their developmental fate by transcription factors. Ann NY Acad Sci 2003 ; 991 : 36-47.
- 38. Kim JH, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002 ; 418 : 50-6.
- 39. Jiang C, Wan X, He Y, et al. Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 2005 ; 191 : 154-62.
- 40. Chandran S, Kato H, Gerreli D, et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 2003 ; 130 : 6599-609.
- 41. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors : a source of myelinating transplants. Science 1999 ; 285 : 754-6.
- 42. Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 2000 ; 97 : 6126-31.
- 43. Xian HQ, McNichols E, St Clair A, et al. A subset of ES-cell-derived neural cells marked by gene targeting. Stem Cells 2003 ; 21 : 41-9.
- 44. Angelov DN, Arnhold S, Andressen C, et al. Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev Neurosci 1998 ; 20 : 42-51.
- 45. Xian H, Gottlieb DI. Dividing Olig2-expressing progenitor cells derived from ES cells. Glia 2004 ; 47 : 88-101.
- 46. Gardner RL, Brook FA. Reflections on the biology of embryonic stem (ES) cells. Int J Dev Biol 1997 ; 41 : 235-43
- 47. Ahn JI, Lee KH, Shin DM, et al. Comprehensive transcriptome analysis of differentiation of embryonic stem cells into midbrain and hindbrain neurons. Dev Biol 2004 ; 265 : 491-501.
- 48. Appel B, Eisen JS. Retinoids run rampant : multiple roles during spinal cord and motor neuron development. Neuron 2003 ; 40 : 461-4.
- 49. Arnhold S, Lenartz D, Kruttwig K, et al. Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1-positive neurons and glia after transplantation into adult rat striatum. J Neurosurg 2000 ; 93 : 1026-32.
- 50. Strubing C, Ahnert-Hilger G, Shan J, et al. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 1995 ; 53 : 275-87.
- 51. Cazillis M, Gonzalez BJ, Billardon C, et al. VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci 2004 ; 19 : 798-808.
- 52. Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000 ; 28 : 31-40.