Résumés
Résumé
Les succès récents du clonage animal démontrent que le noyau d’une cellule somatique adulte différenciée peut retourner à un état de type embryonnaire, lui permettant de repasser par les étapes qui conduisent à la naissance d’un animal viable et normal. Même si les rendements restent très faibles, l’obtention de ces animaux illustre la plasticité extraordinaire du noyau et l’influence de son environnement cytoplasmique sur le profil d’expression des gènes. Seul jusqu’à présent le cytoplasme ovocytaire s’est montré capable d’induire une telle « reprogrammation ». Les mécanismes moléculaires sous-jacents font désormais l’objet de nombreuses études, notamment pour comprendre les modifications des marques épigénétiques et les remaniements de structure chromatinienne impliqués dans cette reprogrammation. Cet article fait le point sur les principaux résultats obtenus par la mise en oeuvre de cette approche expérimentale qu’est le clonage.
Summary
The fact that the nucleus of a differentiated somatic cell can be reprogrammed in order to sustain embryonic development is now well established. Experiments of somatic cell nuclear transfer (cloning) have proved that a foreign nucleus introduced into an enucleated oocyte can give rise to physiologically normal offsprings, with a normal lifespan. Such evidence of genome expression plasticity is also observed experimentally with heterokaryons, created by the fusion or the nuclear transfer between two somatic cells, where differentiated nuclei are able to express genes characteristic of the host cell. However, the epigenetic mechanisms that permit nuclear plasticity remain poorly understood. In this paper we present the main evidences showing important modifications of the large scale organisation of chromosomal domains and of the DNA methylation pattern upon nuclear transfer and during the first cleavages. These modifications of epigenetic marks, brought by an intimate contact between the chromatin and the recipient oocyte cytoplasmic factors, appear essential for further development. They are established over the first cell cycles of development. The onset of embryonic genome activation and the first cellular differentiation events that occur over the implantation period are two additional check-points of reprogramming that appear to be also highly dependant on epigenetic alterations. Beyond those stages, defective placental functions might be directly responsible for the fetal and postnatal physiopathologies frequently observed in cloned animals. No direct link between preimplantation reprogramming defaults, placental disfunctions and low development to term has been established yet. The epigenetics studies which are now used to characterise loci specific and probably genotype dependant alterations in cloned animals of different species will provide unvaluable help to define the role of epigenesis in the achievement of a developmental program.
Parties annexes
Références
- 1. Holliday R. Epigenetics : an overview. Dev Genet 1994 ; 15 : 453-7.
- 2. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 1999 ; 146 : 1211-26.
- 3. Craig JM. Heterochromatin-many flavours, common themes. Bioessays 2005 ; 27 : 17-28.
- 4. Western PS, Surani MA. Nuclear reprogramming-alchemy or analysis ? Nat Biotechnol 2002 ; 20 : 445-6.
- 5. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 1952 ; 38 : 455-63.
- 6. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962 ; 4 : 256-73.
- 7. Gurdon JB, Uehlinger V. « Fertile » intestine nuclei. Nature 1966 ; 210 : 1240-1.
- 8. Jouneau A, Renard JP. Reprogramming in nuclear transfer. Curr Opin Genet Dev 2003 ; 13 : 486-91.
- 9. Hiiragi T, Solter D. Reprogramming is essential in nuclear transfer. Mol Reprod Dev 2005 ; 70 : 417-21.
- 10. Borsuk E, Szollosi MS, Besomebes D, Debey P. Fusion with activated mouse oocytes modulates the transcriptional activity of introduced somatic cell nuclei. Exp Cell Res 1996 ; 225 : 93-101.
- 11. Szollosi D, Czolowska R, Borsuk E, et al. Nuclear envelope removal/maintenance determines the structural and functional remodelling of embryonic red blood cell nuclei in activated mouse oocytes. Zygote 1998 ; 6 : 65-73.
- 12. Campbell KH, Loi P, Otaegui PJ, Wilmut I. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1996 ; 1 : 40-6.
- 13. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 1983 ; 32 : 1171-80.
- 14. Chiu CP, Blau HM. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 1984 ; 37 : 879-87.
- 15. Blau HM, Pavlath GK, Hardeman EC, et al. Plasticity of the differentiated state. Science 1985 ; 230 : 758-66.
- 16. Ringertz NE, Savage RE. Cell hybrids. New York : Academic press, 1976.
- 17. Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 1985 ; 40 : 417-24.
- 18. Hakelien AM, Landsverk HB, Robl JM, et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 2002 ; 20 : 460-6.
- 19. Kimura H, Tada M, Nakatsuji N, Tada T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 2004 ; 24 : 5710-20.
- 20. Merriam RW. Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci 1969 ; 5 : 333-49.
- 21. Barry JM, Merriam RW. Swelling of hen erythrocyte nuclei in cytoplasm from Xenopus eggs. Exp Cell Res 1972 ; 71 : 90-6.
- 22. Gurdon JB. Injected nuclei in frog oocytes : fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol 1976 ; 36 : 523-40.
- 23. Gurdon JB, Laskey RA, De Robertis EM, Partington GA. Reprogramming of transplanted nuclei in amphibia. Int Rev Cytol 1979 ; 9 (suppl) : 161-78.
- 24. Gao S, Gasparrini B, McGarry M, et al. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol Reprod 2002 ; 67 : 928-34.
- 25. Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998 ; 394 : 369-74.
- 26. Ducibella T, Huneau D, Angelichio E, et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 2002 ; 250 : 280-91.
- 27. Eggan K, Baldwin K, Tackett M, et al. Mice cloned from olfactory sensory neurons. Nature 2004 ; 428 : 44-9.
- 28. Vignon X, Zhou Q, Renard JP. Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells 2002 ; 4 : 363-77.
- 29. Heyman Y, Chavatte-Palmer P, LeBourhis D, et al. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 2002 ; 66 : 6-13.
- 30. Gonda K, Fowler J, Katoku-Kikyo N, et al. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat Cell Biol 2003 ; 5 : 205-10.
- 31. Gao S, Chung YG, Parseghian MH, et al. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer : evidence for a uniform developmental program in mice. Dev Biol 2004 ; 266 : 62-75.
- 32. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992 ; 69 : 915-26.
- 33. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999 ; 99 : 247-57.
- 34. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002 ; 16 : 6-21.
- 35. Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature 2000 ; 403 : 501-2.
- 36. Rougier N, Bourc’his D, Gomes DM, et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 1998 ; 12 : 2108-13.
- 37. Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development : aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001 ; 98 : 13734-8.
- 38. Bourc’his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001 ; 11 : 1542-6.
- 39. Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 2004 ; 71 : 185-93.
- 40. Beaujean N, Taylor JE, McGarry M, et al. The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci USA 2004 ; 101 : 7636-40.
- 41. Santos F, Zakhartchenko V, Stojkovic M, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003 ; 13 : 1116-21.
- 42. Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 2002 ; 99 : 12889-94.
- 43. Niemann H, Wrenzycki C, Lucas-Hahn A, et al. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 2002 ; 4 : 29-38.
- 44. Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 2000 ; 63 : 1034-40.
- 45. Gao S, Chung YG, Williams JW, et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol Reprod 2003 ; 69 : 48-56.
- 46. Arat S, Rzucidlo SJ, Stice SL. Gene expression and in vitro development of inter-species nuclear transfer embryos. Mol Reprod Dev 2003 ; 66 : 334-42.
- 47. De Sousa PA, King T, Harkness L, et al. Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol Reprod 2001 ; 65 : 23-30.
- 48. Shiota K, Yanagimachi R. Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation 2002 ; 69 : 162-6.
- 49. Ogonuki N, Inoue K, Yamamoto Y, et al. Early death of mice cloned from somatic cells. Nat Genet 2002 ; 30 : 253-4.
- 50. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004 ; 14 : 188-95.
- 51. Mann MR, Chung YG, Nolen LD, et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 2003 ; 69 : 902-14.
- 52. Chavatte-Palmer P, Heyman Y, Richard C, et al. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol Reprod 2002 ; 66 : 1596-603.
- 53. Rhind SM, King TJ, Harkness LM, et al. Cloned lambs-lessons from pathology. Nat Biotechnol 2003 ; 21 : 744-5.
- 54. Young LE, Fairburn HR. Improving the safety of embryo technologies : possible role of genomic imprinting. Theriogenology 2000 ; 53 : 627-48.
- 55. Rideout WM, 3rd, Wakayama T, Wutz A, et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000 ; 24 : 109-10.
- 56. Kremenskoy M, Kremenska Y, Ohgane J, et al. Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 2003 ; 311 : 884-90.
- 57. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002 ; 132 : 2393S-400S.