Résumés
Résumé
Les anomalies de l’épissage, et plus largement de la transcription, sont fréquemment sous les feux de l’actualité scientifique et médicale. On observe, notamment, un flot croissant de publications concernant l’impact des modifications nucléotidiques de signification inconnue sur l’épissage. Parallèlement, se développent des outils de bio-informatique destinés à identifier les séquences contrôlant la transcription et à prédire leurs altérations. Cet engouement est motivé par la nature variée et complexe des anomalies de la transcription qui sont, de fait, difficiles à appréhender dans le cadre du diagnostic. La problématique diagnostique est, en effet, bien distincte de celle de la recherche, où les analyses sont généralement faites sur des cas isolés ou de petites séries, sans date limite, ni même nécessité de rendu de résultats. Le diagnostic en génétique moléculaire se fait sur de grandes séries, avec des délais de réalisation, et le résultat est utilisé pour le conseil génétique et le suivi médical du patient. Il s’agit donc, pour le biologiste, de relever le défi de la complexité et de le concilier avec la finalité diagnostique, c’est-à-dire le résultat attendu pour le patient. Nous présentons dans cet article les différents mécanismes de la transcription intéressant le cadre diagnostique, puis les approches à envisager pour identifier les anomalies, avant de conclure sur les évolutions à prévoir.
Summary
There is a rapidly growing literature on transcription abnormalities, e.g. differential expression of alleles and the role of some single nucleotide polymorphisms in altering splicing patterns. An average 10 % of splicing mutations is reported in the Human Gene Mutation Database but this figure could climb to 50 % for some genes such as NF1 or ATM. This paper therefore aims at clarifying some important aspects of transcriptional abnormalities in genetic testing. The main types of alterations are presented, i.e. exonic, intronic and promoter modifications that could modify or create consensus motif and/or secondary structures. DNA, RNA based-diagnostic strategies and in silico tools are then presented and their performances and limitations outlined to build up a picture of the current state of the art.
Parties annexes
Références
- 1. Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD) : 2003 update. Hum Mutat 2003 ; 21 : 577-81.
- 2. Ars E, Serra E, Garcia J, et al. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 2000 ; 9 : 237-47.
- 3. Teraoka SN, Telatar M, Becker-Catania S, et al. Splicing defects in the ataxia-telangiectasia gene, ATM : underlying mutations and consequences. Am J Hum Genet 1999 ; 64 : 1617-31.
- 4. Cooper TA, Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997 ; 61 : 259-66.
- 5. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense : exonic mutations that affect splicing. Nat Rev Genet 2002 ; 3 : 285-98.
- 6. Yang Y, Swaminathan S, Martin BK, Sharan SK. Aberrant splicing induced by missense mutations in BRCA1 : clues from a humanized mouse model. Hum Mol Genet 2003 ; 12 : 2121-31.
- 7. Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002 ; 30 : 377-84.
- 8. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 2003 ; 34 : 460-3.
- 9. Cogan JD, Prince MA, Lekhakula S, et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet 1997 ; 6 : 909-12.
- 10. Pagani F, Stuani C, Tzetis M, et al. New type of disease causing mutations : the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 2003 ; 12 : 1111-20.
- 11. Chao HK, Hsiao KJ, Su TS. A silent mutation induces exon skipping in the phenylalanine hydroxylase gene in phenylketonuria. Hum Genet 2001 ; 108 : 14-9.
- 12. Hefferon TW, Groman JD, Yurk CE, Cutting GR. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA 2004 ; 101 : 3504-9.
- 13. Buratti E, Brindisi A, Pagani F, Baralle FE. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9 : a functional link with disease penetrance. Am J Hum Genet 2004 ; 74 : 1322-5.
- 14. Sakai T, Ohtani N, McGee TL, et al. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991 ; 353 : 83-6.
- 15. Ohtani-Fujita N, Fujita T, Takahashi R, et al. A silencer element in the retinoblastoma tumor-suppressor gene. Oncogene 1994 ; 9 : 1703-11.
- 16. Price P, Wong AM, Williamson D, et al. Polymorphisms at positions -22 and -348 in the promoter of the BAT1 gene affect transcription and the binding of nuclear factors. Hum Mol Genet 2004 ; 13 : 967-74.
- 17. Liu L, Dilworth D, Gao L, et al. Mutation of the CDKN2A 5’ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 1999 ; 21 : 128-32.
- 18. Cazzola M, Skoda RC. Translational pathophysiology : a novel molecular mechanism of human disease. Blood 2000 ; 95 : 3280-8.
- 19. Marlin S, Blanchard S, Slim R, et al. Townes-Brocks syndrome : detection of a SALL1 mutation hot spot and evidence for a position effect in one patient. Hum Mutat 1999 ; 14 : 377-86.
- 20. Bedell MA, Jenkins NA, Copeland NG. Good genes in bad neighbourhoods. Nat Genet 1996 ; 12 : 229-32.
- 21. Pfeifer D, Kist R, Dewar K, et al. Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9 : evidence for an extended control region. Am J Hum Genet 1999 ; 65 : 111-24.
- 22. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet 2004 ; 36 : 801-8.
- 23. Roca X, Sachidanandam R, Krainer AR. Intrinsic differences between authentic and cryptic 5’ splice sites. Nucleic Acids Res 2003 ; 31 : 6321-33.
- 24. Harland M, Mistry S, Bishop DT, Bishop JA. A deep intronic mutation in CDKN2A is associated with disease in a subset of melanoma pedigrees. Hum Mol Genet 2001 ; 10 : 2679-86.
- 25. Abkevich V, Zharkikh A, Deffenbaugh AM, et al. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 2004 ; 41 : 492-507.
- 26. Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95 % of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000 ; 15 : 541-55.
- 27. Andreutti-Zaugg C, Scott RJ, Iggo R. Inhibition of nonsense-mediated messenger RNA decay in clinical samples facilitates detection of human MSH2 mutations with an in vivo fusion protein assay and conventional techniques. Cancer Res 1997 ; 57 : 3288-93.
- 28. Tufarelli C, Stanley JA, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003 ; 34 : 157-65.
- 29. Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature 2004 ; 430 : 85-8.
- 30. Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 2004 ; 429 : 268-74.
- 31. Hudder A, Werner R. Analysis of a Charcot-Marie-Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene. J Biol Chem 2000 ; 275 : 34586-91.
- 32. Bulyk ML. Computational prediction of transcription-factor binding site locations. Genome Biol 2003 ; 5 : 201.
- 33. Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004 ; 5 : 276-87.