Résumés
Résumé
Les cellules souches embryonnaires (ES) pluripotentes offrent un modèle de développement précoce du myocarde et apportent de nouveaux espoirs de thérapie cellulaire des maladies dégénératives. Les potentialités cardiogéniques des cellules ES permettent une recherche cognitive sur les réseaux transcriptionnels activés par les morphogènes et qui gouvernent la différenciation cellulaire cardiaque. Bien que les cellules ES humaines soient, comme les cellules de souris, isolées à partir du stade blastocyste de l’embryon, des différences dans le développement embryonnaire des deux espèces entraînent des phénotypes cellulaires et des propriétés spécifiques à chaque espèce. Les enjeux actuels sont donc de comprendre les mécanismes moléculaires des processus de spécification et de différenciation cardiaque des cellules ES humaines afin d’accroître leur potentiel cardiogénique. Ce but atteint, ces cellules permettront l’étude du développement cardiaque précoce, nécessaire à une meilleure compréhension des maladies cardiaques congénitales et ouvriront les perspectives de thérapie régénératrice du myocarde.
Summary
Embryonic stem cells are capable to recapitulate the first stages of myocardial development. Using mouse embryonic stem cells, transcriptional networks specifying the cardiac fate can be delineated. Furthermore, using members of the TGFβ superfamily to commit mouse ES cells toward a cardiac lineage, recent studies showed that ESC-derived cardiomyocytes were capable to repair post-infarcted myocardium of small and large animals. The next challenges are to validate such results using human ESCs in order to better comprehend cardiac congenital diseases and to foresee a cell therapy of heart failure.
Parties annexes
Références
- 1. Leblond CP, Walker BE. Renewal of cell populations. Physiol Rev 1956 ; 36 : 255-76.
- 2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145-7.
- 3. Rosenthal N. Youthful prospects for human stem-cell therapy. EMBO Rep 2005 ; 6 : S30-4.
- 4. Magnuson T, Epstein CJ, Silver LM, et al. Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature 1982 ; 298 : 750-3.
- 5. Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994 ; 75 : 233-44.
- 6. Meyer N, Jaconi M, Ladopoulou A, et al. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett 2000 ; 478 : 151-8.
- 7. Mery A, Aimond F, Menard, et al. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5 trisphosphate-dependent calcium signaling. Mol Biol Cell 2005 ; 9 : 2414-23.
- 8. Rizzino A. Early mouse embryos produce and release factors with transforming growth factor activity. In Vitro Cell Dev Biol 1985 ; 21 : 531-6.
- 9. Behfar A, Zingman L, Hodgson D, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002 ; 16 : 1558-66.
- 10. Frasch M. Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 1999 ; 10 : 61-71.
- 11. Andree B, Duprez D, Vorbusch B, et al. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998 ; 70 : 119-31.
- 12. Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001 ; 234 : 330-8.
- 13. Shi Y, Katsev S, Cai C, Evans S. BMP signaling is required for heart formation in vertebrates. Dev Biol 2000 ; 224 : 226-37.
- 14. Kelly RG. Molecular inroads into the anterior heart field. Trends Cardiovasc Med 2005 ; 15 : 51-6.
- 15. Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003 ; 5 : 877-89.
- 16. Von Both I, Silvestri C, Erdemir T, et al. Foxh1 is essential for development of the anterior heart field. Dev Cell 2004 ; 7 : 331-45.
- 17. Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004 ; 6 : 685-98.
- 18. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000 ; 46 : 250-6.
- 19. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 2005 ; 111 : 2486-93.
- 20. Ménard C, Hagège A, Agbulut O, et al. Transplantation of mouse cardiac-committed embryonic stem cells in infarcted sheep myocardium: a preclinical study. Lancet 2006 (sous presse).
- 21. Behfar A, Hodgson DM, Zingman LV, et al. Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Ann NY Acad Sci 2005 ; 1049 : 189-98.
- 22. Damajanov I, Solter D, Skreb N. Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Roux Arch Dev Biol 1971 ; 173 : 228-34.
- 23. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA 2005 ; 102 : 2928-33.
- 24. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001 ; 108 : 407-14.
- 25. He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 2003 ; 93 : 32-9.
- 26. Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004 ; 22 : 1282-9.
- 27. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005 ; 111 : 11-20.
- 28. Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development 2004 ; 131 : 5515-25.
- 29. Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000 ; 97 : 11307-12.
- 30. Mummery C, Ward-Van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003 ; 107 : 2733-40.
- 31. Chiu RC. Xenogeneic cell transplant: fact or fancy? Int J Cardiol 2004 ; 95 (suppl 1) : S43-4.
- 32. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004 ; 22 : 136-41.
- 33. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005 ; 105 : 1815-22.
- 34. Frandrich F, Lin X, Chai GX, et al. Preimplantation-stage stem cells induce long-term allogenic graft acceptance without supplementary host conditioning. Nat Med 2002 ; 8 : 171-8.
- 35. Li L, Baroja ML, Majumdar A, Chadwick K, et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004 ; 22 : 448-56.
- 36. Fabricius D, Bonde S, Zavazava N. Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 2005 ; 79 : 1040-4.
- 37. Tam PLL, Zhou SX. The allocation of epiblats cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996 ; 178 : 124-32.
- 38. Papadimou E, Menard C, Grey C, Puceat M. Interplay between the retinoblastoma protein and LEK1 specifies stem cells toward the cardiac lineage. EMBO J 2005 ; 24 : 1750-61.
- 39. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet 2002 ; 3 : 544-56.
- 40. Eisenberg CA, Eisenberg LM. WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 1999 ; 216 : 45-58.
- 41. Dell’Era P, Ronca R, Coco L, et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ Res 2003 ; 93 : 414-20.
- 42. Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 2001 ; 105 : 781-92.
- 43. Schroeder T, Fraser ST, Ogawa M, et al. Recombination signal sequence-binding protein J-kappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci USA 2003 ; 100 : 4018-23.
- 44. Ryan K, Chin AJ. T-box genes and cardiac development. Birth Defects Res C Embryo Today 2003 ; 69 : 25-37.
- 45. Olson EN. Development. The path to the heart and the road not taken. Science 2001 ; 291 : 2327-8.
- 46. Loebel DA, Watson CM, De Young RA, et al. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003 ; 264 : 1-14.
- 47. Wei Y, Bader D, Litvin J. Identification of a novel cardiac-specific transcript critical for cardiac myocyte differentiation. Development 1996 ; 122 : 2779-89.
- 48. Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 1999 ; 193 : 71-124.
- 49. Dvash T, Mayshar Y, Darr H, et al. Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum Reprod 2004 ; 19 : 2875-83.
- 50. Rao M. Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. Dev Biol 2004 ; 275 : 269-86.