Résumés
Résumé
Les maladies héréditaires du métabolisme ont acquis une place de plus en plus importante dans la pathologie pédiatrique. Leur nombre ne cesse d’augmenter au fur et à mesure de la progression des connaissances en biologie cellulaire et des progrès techniques d’investigation. Nous traiterons ici de trois maladies métaboliques que l’imagerie fonctionnelle et la spectroscopie IRM ont permis d’identifier. Il s’agit des déficits en créatine traitables par l’administration de créatine et les défauts du métabolisme des polyols qui ouvrent le champ sur de nouveaux déficits enzymatiques responsables de présentations cliniques très variées. Nous aborderons également les hyperinsulinismes du jeune enfant dont le diagnostic et la prise en charge ont été récemment transformées par l’utilisation de la [18F]-fluoro-L-DOPA en tomographie par émission de positons.
Summary
New metabolic diseases are regularly identified by a genetic or biochemical approach. Indeed, the metabolic diseases result from an enzymatic block with accumulation of a metabolite upstream to the block and deficit of a metabolite downstream. The characterization of these abnormal metabolites by MRI spectroscopy permitted to identify the deficient enzyme in two new groups of diseases, creatine deficiencies and polyol anomalies. Creatine deficiency is implicated in unspecific mental retardation. A low peak of creatine at MRI spectroscopy is evocating of creatine deficiency which is treatable by creatine administration. Deficiency of synthesis of polyols, metabolites on the pentose pathway, represent new described metabolic diseases with variable symptoms including a neurological distress, liver disease, splenomegaly, cutis laxa and renal insufficiency. The deficit of ribose-5-phosphate isomerase, one of the enzymes whose diagnosis is evoked in front of the accumulation of ribitol, arabitol and xylitol leads to a leucodystrophy in adults. This new deficit was highlighted by the identification of an abnormal peak in cerebral MRI-spectroscopy corresponding to the abnormal accumulation of polyols in brain. Congenital hyperinsulinism (HI) is characterized by profound hypoglycaemia related to inappropriate insulin secretion. Focal and diffuse forms of hyperinsulinism share a similar clinical presentation but their treatment is dramatically different. Until recently, preoperative differential diagnosis was based on pancreatic venous sampling, an invasive and technically demanding technique. Positron emission tomography (PET) after injection of [18F]Fluoro-L-DOPA has been evaluated for the preoperative differentiation between focal and diffuse HI, by imaging uptake of radiotracer and the conversion of [18F]Fluoro-L-DOPA into dopamine by DOPA decarboxylase. PET with [18F]Fluoro-L-DOPA has been validated as a reliable test to differentiate diffuse and focal HI and is now a major differential diagnosis tool in infantile hyperinsulinemic hypoglycaemia.
Parties annexes
Références
- 1. Fernandes J, Saudubray JM, Van den Berghe G. Inborn metabolic diseases. Diagnosis and treatment, 3rd ed. Heidelberg : Springer, 2001.
- 2. Scriver C, Beaudet A, Sly W, Valle D. The metabolic and molecular bases of inherited disease, 8th ed. New York : MacGraw Hill, 2001.
- 3. Saudubray JM, Ogier H, Bonnefont JP, et al. Clinical approach to inherited metabolic diseases in the neonatal period : a 20-year survey. J Inherit Metab Dis 1989 ; 12 (suppl 1) : 25-41.
- 4. Rosenberg EH, Almeida LS, Kleefstra T, et al. High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 2004 ; 75 : 97-105.
- 5. Battini R, Leuzzi V, Carducci C, et al. Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 2002 ; 77 : 326-31.
- 6. Stockler S, Hanefeld F, Frahm J. Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 1996 ; 348 : 789-90.
- 7. Sipila I. Inhibition of arginine-glycine amidinotransferase by ornithine. A possible mechanism for the muscular and chorioretinal atrophies in gyrate atrophy of the choroid and retina with hyperornithinemia. Biochim Biophys Acta 1980 ; 613 : 79-84.
- 8. Sipila I, Simell O, Arjomaa P. Gyrate atrophy of the choroid and retina with hyperornithinemia. Deficient formation of guanidinoacetic acid from arginine. J Clin Invest 1980 ; 66 : 684-7.
- 9. Santinelli R, Costagliola C, Tolone C, et al. Low-protein diet and progression of retinal degeneration in gyrate atrophy of the choroid and retina : a twenty-six-year follow-up. J Inherit Metab Dis 2004 ; 27 : 187-96.
- 10. Huck JH, Verhoeven NM, van Hagen JM, et al. Clinical presentations of patients with polyol abnormalities. Neuropediatrics 2004 ; 35 : 167-73.
- 11. Huck JH, Verhoeven NM, Struys EA, et al. Ribose-5-phosphate isomerase deficiency : new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 2004 ; 74 : 745-51.
- 12. Moolenaar SH, van der Knaap MS, Engelke UF, et al. In vivo and in vitro NMR spectroscopy reveal a putative novel inborn error involving polyol metabolism. NMR Biomed 2001 ; 14 : 167-76.
- 13. Van der Knaap MS, Wevers RA, Struys EA, et al. Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 1999 ; 46 : 925-8.
- 14. Verhoeven NM, Huck JH, Roos B, et al. Transaldolase deficiency : liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 2001 ; 68 : 1086-92.
- 15. Verhoeven NM, Wallot M, Huck JH, et al. A newborn with severe liver failure, cardiomyopathy and transaldolase deficiency. J Inherit Metab Dis 2005 ; 28 : 169-79.
- 16. Jauniaux E, Hempstock J, Teng C, et al. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy : maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab 2005 ; 90 : 1171-5.
- 17. Nicol CJ, Zielenski J, Tsui LC, Wells PG. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J 2000 ; 14 : 111-27.
- 18. Yancey PH, Clark ME, Hand SC, et al. Living with water stress: evolution of osmolyte systems. Science 1982 ; 217 : 1214-22.
- 19. Ribeiro MJ, de Lonlay P, Delzescaux T, et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med 2005 ; 46 : 560-6.
- 20. De Lonlay-Debeney P, Poggi-Travert F, Fournet JC, et al. Clinical features of 52 neonates with hyperinsulinism. N Engl J Med 1999 ; 340 : 1169-75.
- 21. Rahier J, Sempoux C, Fournet JC, et al. Partial or near-total pancreatectomy for persistent neonatal hyperinsulinaemic hypoglycaemia : the pathologist’s role. Histopathology 1998 ; 32:15-9.
- 22. Sempoux C, Guiot Y, Jaubert F, Rahier J. Focal and diffuse forms of congenital hyperinsulinism: the keys for differential diagnosis. Endocr Pathol 2004 ; 15 : 241-6.
- 23. De Lonlay P, Fournet JC, Rahier J, et al. Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 1997 ; 100 : 802-7.
- 24. Verkarre V, Fournet JC, de Lonlay P, et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 1998 ; 102 : 1286-91.
- 25. Dubois J, Brunelle F, Touati G, et al. Hyperinsulinism in children : diagnostic value of pancreatic venous sampling correlated with clinical, pathological and surgical outcome in 25 cases. Pediatr Radiol 1995 ; 25 : 512-6.
- 26. Ribeiro MJ, Vidailhet M, Loc’h C, et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch Neurol 2002 ; 59 : 580-6.