Résumés
Résumé
La mobilisation des réserves lipidiques, stockées sous forme de triglycérides dans le tissu adipeux, relève de l’activation de la lipolyse dans l’adipocyte. Les travaux des 30 dernières années ont établi le rôle essentiel joué par la voie de l’AMP cyclique et la lipase hormono-sensible dans le contrôle de la lipolyse. Les catécholamines et l’insuline sont les agents hormonaux essentiels impliqués dans le contrôle de ce processus dans l’adipocyte humain. Nous rapportons la découverte d’un nouveau mécanisme de contrôle de la lipolyse qui implique les peptides natriurétiques d’origine cardiaque et la voie du GMP cyclique. Ces peptides, qui participent à la gestion de l’homéostasie de l’eau et du sel, agissent également sur l’adipocyte. Ils sont doués de propriétés lipolytiques et leur mécanisme d’action a été établi. De plus, nous montrons leur implication dans le contrôle physiologique de la mobilisation des lipides chez l’homme pendant la pratique d’une activité physique.
Summary
Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell β- and α2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3’,5’-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and non-esterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a β-blocker. Oral β-adrenoceptor blockade suppresses the β-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.
Parties annexes
Références
- 1. Lafontan M, Langin D. Régulation neuro-humorale de la lipolyse : aspects physiologiques et physiopathologiques. Med Sci(Paris) 1998 ; 14 : 865-76.
- 2. Holm C, Osterlund T, Laurell H, et al. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 2000 ; 20 : 365-93.
- 3. Langin D, Lafontan M. Lipolysis and lipid mobilization in human adipose tissue. In : Bray GA, Bouchard C, eds. Handbook of obesity. Etiology and pathophysiology, 2nd ed. New York : Marcel Dekker Inc, 2004 : 515-32.
- 4. Langin D, Lucas S, Lafontan M. Millenium fat-cell lipolysis reveals unsuspected novel tracks. Hormon Metab Res 2000 ; 32 : 443-52.
- 5. Capeau J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci(Paris) 2003 ; 19 : 834-9.
- 6. Soeder KJ, Snedden SK, Cao W, et al. The β3-adrenergic receptor activates mitogen activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 1999 ; 274 : 12017-22.
- 7. Ryden M, Dicker A, van Harmelen V, et al. Mapping of early signaling events in tumor necrosis-alpha-mediated lipolysis in human fat cells. J Biol Chem 2002 ; 277 : 1085-91.
- 8. Zhang HH, Halbleib M, Ahmad F, et al. Tumor necrosis factor-α∈stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 2002 ; 51 : 2929-35.
- 9. Greenberg AS, Shen WJ, Muliro K, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 2001 ; 276 : 45456-61.
- 10. Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 2003 ; 14 : 386-92.
- 11. Kuhn M. Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003 ; 93 : 700-9.
- 12. Sengenes C, Berlan M, de Glisezinski I, et al. Natriuretic peptides : a new lipolytic pathway in human adipocytes. FASEB J 2000 ; 14 : 1345-51.
- 13. Sengenes C, Bouloumié A, Hauner H, et al. Involvement of a cGMP-dependent pathway in natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003 ; 278 : 48617-26.
- 14. Moro C, Galitzky J, Sengenes C, et al. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J Pharmacol Exp Ther 2004 ; 308 : 984-92.
- 15. Sengenes C, Zakaroff-Girard A, Moulin A, et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol 2002 ; 283 : R257-65.
- 16. Lafontan M, Arner P. Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci 1996 ; 17 : 309-13.
- 17. Galitzky J, Sengenes C, Thalamas C, et al. The lipid mobilizing effect of atrial natriuretic peptides is unrelated to sympathetic nervous system activation or obesity in young men. J Lipid Res 2001 ; 42 : 536-44.
- 18. Moro C, Crampes F, Sengenes C, et al. Atrial natriuretic peptide contributes to the physiological control of lipid mobilization in humans. FASEB J 2004 ; 18 : 908-10.
- 19. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 2004 ; 109 : 594-600.