Résumés
Résumé
L’étude d’une forme rare d’hypertension artérielle de transmission mendélienne, l’hypertension hyperkaliémique familiale (HHF), a récemment permis d’identifier des mutations dans les gènes WNK1 et WNK4, qui codent pour des protéines appartenant à une nouvelle famille de sérine-thréonine kinases (with no lysine [K] kinase). Plusieurs éléments du tableau clinique de l’HHF, caractérisé par une hyperkaliémie, une hyperchlorémie et une grande sensibilité aux diurétiques thiazidiques, sont en faveur d’une anomalie du transport ionique dans le tubule distal rénal. En accord avec cette hypothèse, WNK1 et WNK4 sont fortement exprimés dans cette partie du néphron. On les retrouve également dans de nombreux épithéliums impliqués dans le transport du chlore, tels que celui du côlon. In vitro, WNK4 règle à la fois le transport de Na+, K+ et Cl-, et pourrait donc constituer une voie de régulation importante des transports ioniques rénal et extra-rénal.
Summary
Arterial hypertension is a complex trait influenced by a variety of environmental and genetic factors. Several approaches can be used to identify its susceptibility genes : one is to study rare monogenic forms of hypertension, like familial hyperkalemic hypertension (FHH). Also known as pseudohypoaldosteronism type 2 or Gordon syndrome, FHH is characterized by hypertension, hyperkalemia despite normal renal glomerular filtration rate, abnormalities which are particularly sensitive to thiazide diuretics. Mild hyperchloremia, metabolic acidosis, and suppressed plasma renin activity are associated findings. Despite its phenotypic and genetic heterogeneity, mutations in two related genes, WNK1 and WNK4, were recently identified. These genes belong to a newly identified family of serine-threonine (with no lysine [K]) kinases. Both are highly expressed in the kidney and in a variety of epithelia involved in chloride transport. It has thus been postulated that these two kinases could be implicated in a new pathway of ionic transport regulation. Several studies have very recently confirmed this hypothesis in vitro, in Xenopus oocytes or kidney cell lines. They have shown that, in the renal distal tubule, WNK4 inhibits sodium reabsorption and potassium secretion, via inhibition of NCC (thiazide-sensitive Na+-Cl- cotransporter) and K+ channel ROMK activity, respectively. Interestingly, FHH mutations have opposite effects : while they lead to loss of NCC inhibition, they increase ROMK inhibition. Moreover, they also increase paracellular permeability to chloride of MDCK cells. WNK4 also inhibits apical and basal chloride transporters present in extra-renal epithelia, such as CFEX and Na+-K+-2 Cl-, respectively. It is also interesting to note that the WNK4-mediated negative regulation of NCC activity is in turn inhibited by WNK1. By its role on several transporters, WNK4 appears as a putative key regulator of ionic transport and blood pressure.
Parties annexes
Références
- 1. Gordon RD, Klemm SA, Tunny TJ, et al. Gordon’s syndrome : a sodium-volume-dependent form of hypertension with a genetic basis. In : Laragh JH, Brenner BM, eds. Hypertension : pathophysiology, diagnosis, and management, 2nd ed. New York : Raven, Press Ltd, 1995 : 2111-3.
- 2. Disse-Nicodeme S, Desitter I, Fiquet-Kempf B, et al. Genetic heterogeneity of familial hyperkalaemic hypertension. J Hypertens 2001 ; 19 : 1957-64.
- 3. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science 2001 ; 293 : 1107-12.
- 4. Xu B, English JM, Wilsbacher JL, et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 2000 ; 275 : 16795-801.
- 5. Xu BE, Min X, Stippec S, Lee BH, et al. Regulation of WNK1 by an autoinhibitory domain and autophosphorylation. J Biol Chem 2002 ; 277 : 48456-62.
- 6. Verissimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 2001 ; 20 : 5562-9.
- 7. Wang Z, Yang CL, Ellison DH. Comparison of WNK4 and WNK1 kinase and inhibiting activities. Biochem Biophys Res Commun 2004 ; 317 : 939-44.
- 8. Xu BE, Stippec S, Lenertz L, et al. WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. J Biol Chem 2004 ; 279 : 7826-31.
- 9. Delaloy C, Lu J, Houot AM, et al. Multiple promoters in the WNK1 gene : one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003 ; 23 : 9208-21.
- 10. O’Reilly M, Marshall E, Speirs HJ, Brown RW. WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003 ; 14 : 2447-56.
- 11. Choate KA, Kahle KT, Wilson FH, et al. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl--transporting epithelia. Proc Natl Acad Sci USA 2003 ; 100 : 663-8.
- 12. Kahle KT, Gimenez I, Hassan H, et al. WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia. Proc Natl Acad Sci USA 2004 ; 101 : 2064-9.
- 13. Schnermann J. Sodium transport deficiency and sodium balance in gene-targeted mice. Acta Physiol Scand 2001 ; 173 : 59-66.
- 14. Masilamani S, Wang X, Kim GH, et al. Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction. Am J Physiol Renal Physiol 2002 ; 283 : 648-57.
- 15. Wang W. Regulation of renal K transport by dietary K intake. Annu Rev Physiol 2004 ; 66 : 547-69.
- 16. Yoo D, Kim BY, Campo C, et al. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 2003 ; 278 : 23066-75.
- 17. Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia : the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003 ; 100 : 680-4.
- 18. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003 ; 111 : 1039-45.
- 19. Kahle KT, Wilson FH, Leng Q, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 2003 ; 35 : 372-6.
- 20. Schambelan M, Sebastian A, Rector FC Jr. Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism) : role of increased renal chloride reabsorption. Kidney Int 1981 : 19 : 716-27.
- 21. Yamauchi K, Rai T, Kobayashi K, et al. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci USA 2004 ; 101 : 4690-4.
- 22. Kahle KT, MacGregor GG, Wilson FH, et al. Paracellular Cl– permeability is regulated by WNK4 kinase : Insight into normal physiology and hypertension. Proc Natl Acad Sci USA 2004 ; 101 : 14877-82.