Résumés
Résumé
Les télomères sont des structures nucléoprotéiques, coiffant les chromosomes eucaryotes, qui sont essentielles pour les fonctions et la stabilité du génome. Il est maintenant bien établi que la télomérase, l’enzyme qui ajoute les répétitions d’ADN télomérique aux extrémités de chromosome, est un acteur clé de l’oncogenèse. D’une part, l’absence de télomérase dans les tissus somatiques pourrait permettre la mise en place de certaines étapes précoces du déclenchement des cancers en favorisant l’instabilité génétique. D’autre part, l’activation de la télomérase dans les cellules cancéreuses est requise pour permettre la croissance à long terme des cellules transformées. Outre la télomérase, de nombreux facteurs contrôlent la structure et la fonction des télomères, suggérant qu’ils puissent aussi participer à l’oncogenèse.
Summary
Telomeres are nucleoprotein complexes that cap the end of eukaryotic chromosomes. They are essential for the functions and the stability of the genomes. There is now compelling evidences that telomerase, the enzyme that adds telomeric DNA repeats to chromosome end, is an important player in oncogenesis. The absence of telomerase in somatic tissues is thought to promote genome instability at initial stages of oncogenesis, favoring the emergence of cancer-associated chromosomal abnormalities ; restablishment of telomerase activity is expected afterwards if long term cell cycling is to occur. In addition to telomerase, various factors control the structure and function of telomeres, suggesting that additional telomeric components play important roles during oncogenesis.
Parties annexes
Références
- 1. Cech TR. Beginning to understand the end of the chromosome. Cell 2004 ; 116 : 273-9.
- 2. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003 ; 114 : 241-53.
- 3. Gisselsson D. Chromosome instability in cancer : how, when, and why ? Adv Cancer Res 2003 ; 87 : 1-29.
- 4. O’Sullivan JN, Bronner MP, Brentnall TA, et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 2002 ; 32 : 280-4.
- 5. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000 ; 406 : 641-5.
- 6. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001 ; 28 : 155-9.
- 7. Gabet AS, Mortreux F, Charneau P, et al. Inactivation of hTERT transcription by Tax. Oncogene 2003 ; 22 : 3734-41.
- 8. Kim NW, Piatyszek MA, Prowse KR, et al. Specific associations of human telomerase activity with immortal cells and cancer. Science 1994 ; 266 : 2011-4.
- 9. Greenberg RA, Chin L, Femino A, et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 1999 ; 97 : 515-25.
- 10. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000 ; 26 : 114-7.
- 11. Farazi PA, Glickman J, Jiang S, et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 2003 ; 63 : 5021-7.
- 12. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999 ; 400 : 464-8.
- 13. Elenbaas B, Spirio L, Koerner F, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001 ; 15 : 50-65.
- 14. Lundberg AS, Randell SH, Stewart SA, et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 2002 ; 21 : 4577-86.
- 15. Bryan TM, Englezou A, Dalla-Pozza L, et al. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 1997 ; 3 : 1271-4.
- 16. Seger YR, Garcia-Cao M, Piccinin S, et al. Transformation of normal human cells in the absence of telomerase activation. Cancer Cell 2002 ; 2 : 401-13.
- 17. Lazarov M, Kubo Y, Cai T, et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nat Med 2002 ; 8 : 1105-14.
- 18. Brun C, Marcand S, Gilson E. Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol 1997 ; 7 : 317-24.
- 19. de Lange T. Protection of mammalian telomeres. Oncogene 2002 ; 21 : 532-40.
- 20. Ancelin K, Brunori M, Bauwens S, et al. Targeting assay to study the cis functions of human telomeric proteins : evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002 ; 22 : 3474-87.
- 21. Miyachi K, Fujita M, Tanaka N, et al. Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res 2002 ; 21 : 269-75.
- 22. Kondo T, Oue N, Yoshida K, et al. Expression of POT1 is associated with tumor stage and telomere length in gastric carcinoma. Cancer Res 2004 ; 64 : 523-9.
- 23. Aragona M, De Divitiis O, La Torre D, et al. Immunohistochemical TRF1 expression in human primary intracranial tumors. Anticancer Res 2001 ; 21 : 2135-9.
- 24. Saito K, Yagihashi A, Nasu S, et al. Gene expression for suppressors of telomerase activity (telomeric-repeat binding factors) in breast cancer. Jpn J Cancer Res 2002 ; 93 : 253-8.
- 25. Ohyashiki JH, Hayashi S, Yahata N, et al. Impaired telomere regulation mechanism by TRF1 (telomere-binding protein), but not TRF2 expression, in acute leukemia cells. Int J Oncol 2001 ; 18 : 593-8.
- 26. Nakanishi K, Kawai T, Kumaki F, et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003 ; 9 : 1105-11.
- 27. Stewart SA, Hahn WC, O’Connor BF, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002 ; 99 : 12606-11.
- 28. Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 2003 ; 5 : 474-9.
- 29. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999 ; 97 : 503-14.