Résumés
Résumé
Disposer de la séquence de nombreux génomes est une étape importante pour notre compréhension des organismes vivants. Mais les biologistes rêvaient de pouvoir transformer ces informations « statiques » en données fonctionnelles. La découverte du rôle inhibiteur de l’expression génique des ARN double brin a fourni une approche expérimentale qui répond presque complètement à cette attente. En effet, pour diminuer l’expression d’un gène, il suffit d’introduire dans les cellules de petits ARN double brin qui ont la même séquence que le messager correspondant et interfèrent ainsi avec l’ARN. Il apparaît de plus que ce mécanisme d’interférence par l’ARN est un élément important des régulations de l’expression génique chez les mammifères, du moins sous une forme spécifique, les microARN. Au-delà des études fonctionnelles à l’échelle d’un gène, cette technique rend possible des criblages « géniques » à grande échelle, couvrant à terme l’ensemble du génome. Ainsi, l’interférence par l’ARN ouvre-t-elle l’ère de la génomique fonctionnelle.
Summary
The discovery of the induction of RNA degradation by double stranded RNA in C. elegans, «RNA interference», makes it possible to envision systematic studies of gene function in mammalian cells. Indeed, in spite of the existence in mammals of the interferon response to double stranded RNA, the introduction of small interfering RNA can induce a sequence specific inhibition of gene expression either through RNA degradation or by blocking translation. Although the inhibition is transient and usually not complete, strategies have been developed to achieve long term gene silencing. The issue of target specificity is still not completely clear and will probably constitute a limitation of this approach. However, because of the unprecedented ease with which large scale screens can be performed, RNA interference has already established itself as the tool of choice to initiate functional genomics in mammalian cells.
Parties annexes
Références
- 1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 ; 391 : 806-11.
- 2. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature 2001 ; 409 : 363-6.
- 3. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000 ; 404 : 293-6.
- 4. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004 ; 117 : 69-81.
- 5. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002 ; 16 : 2497-508.
- 6. Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2000 ; 2 : 70-5.
- 7. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 ; 411 : 494-8.
- 8. Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001 ; 114 : 4557-65.
- 9. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002 ; 296 : 550-3.
- 10. Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002 ; 20 : 505-8.
- 11. Brummelkamp T, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002 ; 2 : 243-7.
- 12. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003 ; 33 : 401-6.
- 13. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature 2002 ; 418 : 38-9.
- 14. Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002 ; 532 : 227-30.
- 15. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004 ; 22 : 326-30.
- 16. Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003 ; 115 : 199-208.
- 17. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003 ; 115 : 209-16.
- 18. Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003 ; 31 : 589-95.
- 19. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003 ; 278 : 44312-9.
- 20. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003 ; 21 : 635-7.
- 21. Anonymous. Whither RNAi ? Nat Cell Biol 2003 ; 5 : 489-90.
- 22. Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003 ; 5 : 834-9.
- 23. Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004 ; 10 : 12-8.
- 24. Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 2003 ; 33 : 396-400.
- 25. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003 ; 301 : 1545-7.
- 26. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003 ; 421 : 231-7.
- 27. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004 ; 428 : 431-7.
- 28. Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 2004 ; 428 : 427-31.
- 29. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003 ; 424 : 797-801.
- 30. Vaucheret H, Beclin C, Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci 2001 ; 114 : 3083-91.
- 31. Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999 ; 99 : 123-32.
- 32. Bartel DP. MicroRNAs : Genomics, biogenesis, mechanism, and function. Cell 2004 ; 116 : 281-97.
- 33. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003 ; 115 : 787-8.