Résumés
Résumé
Le syndrome de Kallmann De Morsier est une maladie du développement embryonnaire qui associe un hypogonadisme central et une anosmie. Alors que des mutations du gène KAL1 codant pour l’anosmine-1, une protéine présente dans certaines matrices extracellulaires pendant l’organogenèse, avaient été mises en évidence dans la forme liée au chromosome X, des mutations du gène qui code pour FGFR1, l’un des récepteurs des fibroblast growth factors (FGF), ont été récemment identifiées dans une forme autosomique dominante de la maladie. Il reste à découvrir les autres gènes impliqués dans ce syndrome cliniquement et génétiquement hétérogène. Cependant, nous proposons dès à présent une hypothèse physiopathologique unificatrice pour rendre compte de l’aplasie des bulbes olfactifs qui caractérise ce syndrome.
Summary
Kallmann syndrome (KAL) associates hypogonadotropic hypogonadism and anosmia, i.e. a deficiency of the sense of smell. Anosmia is related to the absence or the hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency, and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. Kallmann syndrome is genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease, KAL-1, has been identified in 1991. KAL1 encodes a ~95 kDa glycoprotein of unknown function, which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL-2), combined to the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF-signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of the KAL1 gene product, the extracellular matrix protein anosmin-1, is to enhance FGF-signaling, and suggest that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males.
Parties annexes
Références
- 1. Dodé C, Levilliers J, Dupont J-M, et al.FGFR1 loss-of-function mutations cause autosomal dominant Kallmann syndrome. Nature Genet 2003 ; 33 : 463-5.
- 2. Naftolin F, Harris GW, Bobrow M. Effect of purified luteinizing hormone releasing factor on normal and hypogonadotropic anosmic men. Nature 1971 ; 232 : 496-7.
- 3. De Morsier G. Etudes sur les dysraphies crânio-encéphaliques. 1. Agénésie des lobes olfactifs (telencephaloschizis latéral) et des commissures calleuse et antérieure (telencephaloschizis médian). La dysplasie olfacto-génitale. Schweiz Arch Neurol Psychiat 1954 ; 74 : 309-61.
- 4. Hardelin J-P. Kallmann syndrome : Towards molecular pathogenesis. Mol Cell Endocrinol 2001 ; 179 : 75-81.
- 5. Kallmann FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am J Mental Deficiency 1944 ; XLVIII : 203-36.
- 6. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991 ; 353 : 529-36.
- 7. Legouis R, Hardelin J-P, Levilliers J, et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991 ; 67 : 423-35.
- 8. Ballabio A, Andria G. Deletions and translocations involving the distal short arm of the human X chromosome : Review and hypotheses. Hum Mol Genet 1992 ; 1 : 221-7.
- 9. Hardelin J-P, Levilliers J, Blanchard S, et al. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome. Hum Mol Genet 1993 ; 2 : 373-7.
- 10. Dodé C, Hardelin J-P. Kallmann syndrome : FGF-signalling insufficiency ? J Mol Med 2004 ; sous presse.
- 11. Oliveira LMB, Seminara SB, Beranova M, et al. The importance of autosomal genes in Kallmann syndrome : Genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 2001 ; 86 : 1532-8.
- 12. Hardelin J-P, Julliard AK, Moniot B, et al. Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis : Implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 1999 ; 215 : 26-44.
- 13. Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. Proc Natl Acad Sci USA 1999 ; 96 : 14440-44.
- 14. Hébert JM, Partanen J, Rossant J, McConnell SK. FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 2003 ; 130 : 1101-11.
- 15. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature 1989 ; 338 : 161-4.
- 16. Schwanzel-Fukuda M, Crossin KL, Pfaff DW, et al. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 1996 ; 366 : 547-57.
- 17. Schwanzel-Fukuda M, Pfaff DW. The structure and function of the nervus terminalis. In : Doty RL, ed. The handbook of clinical olfaction and taste. New York : Dekker, 1995 ; 835-64.
- 18. Schwanzel-Fukuda M, Bick D, Pfaff DW. Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 1989 ; 6 : 311-26.
- 19. Gong Q, Shipley MT. Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb. Neuron 1995 ; 14 : 91-101.
- 20. Muenke M, Schell U, Hehr A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet 1994 ; 8 : 269-74.
- 21. Ibrahimi OA, Zhang F, Eliseenkova AV, et al. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum Mol Genet 2004 ; 13 : 69-78.
- 22. Mayston MJ, Harrison LM, Quinton R, et al. Mirror movements in X-linked Kallmann’s syndrome. I. A neurophysiological study. Brain 1997 ; 120 : 1199-216.
- 23. Bülow HE, Boulin T, Hobert O. Differential functions of the C. elegans FGF receptor in axon outgrowth and maintenance of axon position. Neuron 2004 ; 42 : 367-74.
- 24. Soussi-Yanicostas N, de Castro F, Julliard AK, et al. Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 2002 ; 109 : 217-28.
- 25. Bülow HE, Berry KL, Topper LH, et al. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 2002 ; 99 : 6346-51.
- 26. Raballo R, Rhee J, Lyn-Cook R, et al. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 2000 ; 20 : 5012-23.
- 27. Shin DM, Korada S, Raballo R, et al. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of Fgfr1 signaling is associated with spontaneous hyperactivity in mice. J Neurosci 2004 ; 24 : 2247-58.
- 28. Soussi-Yanicostas N, Hardelin J-P, Arroyo-Jimenez M, et al. Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system. J Cell Sci. 1996 ; 109 : 1749-57.
- 29. Bülow HE, Hobert O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 2004 ; 41 : 723-36.
- 30. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000 ; 103 : 211-25.
- 31. Pellegrini L. Role of heparan sulfate in fibroblast growth factor signaling : a structural view. Curr Opin Struct Biol 2001 ; 11 : 629-34.
- 32. Kiselyov VV, Skladchikova G, Hinsby AM, et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 2003 ; 11 : 691-701.
- 33. Schlessinger J. Signal transduction. Autoinhibition control. Science 2003 ; 300 : 750-52.