Résumés
Résumé
Tous les chiens modernes seraient issus de la domestication des loups qui remonterait à environ 15 000 ans et proviendraient d’un nombre limité de loups femelles d’Asie orientale. Par des pratiques intensives de sélections et de croisements consanguins, l’homme a créé plus de 350 races ; si chacune représente un véritable isolat génétique, elles offrent, toutes réunies, un ensemble inégalé de polymorphismes. Cette revue recense les raisons faisant du chien un modèle irremplaçable. À l’inverse des modèles classiques utilisés pour l’analyse de la fonction des gènes, le chien offre en effet, avec ses très nombreuses races, une opportunité unique pour l’étude des allèles. Cet article présente également les données récentes obtenues dans la construction de cartes génomiques et dans le programme de séquençage du génome du chien, financé par le National Institute of Health (NIH), et rapporte que, parallèlement au séquençage, une analyse du polymorphisme génétique est indispensable pour profiter au mieux des avantages de ce modèle.
Summary
Up to recently, studies on dog genetics were rather scare notwithstanding the enormous potential that the canine model can offer in the study of the genotype/phenotype relationship and the analysis of the causes of many genetic diseases, with simple or complex inheritance, that affect dogs but also the human population. This potentiality is essentially due to the natural history of dogs whose domestication from wolves dated back 15,000 years, at least. All modern dogs originated from a limited number of female wolves from Eastern Asia. By applying a combination of selections and strong inbreeding practices, humans have created over 350 breeds, each of them corresponding to a genetic isolate and altogether offering a unique panel of polymorphism never encountered in any other mammals. In this review we summarized what makes dogs an unavoidable model. Contrary to the classical models like the two yeasts, nematode, fish, fly, mouse, or rat mainly used to understand the function of genes, dog with the creation across the centuries of numerous breeds offers a unique opportunity to study the role of their alleles. We report recent data on the construction of genomic maps and on the sequencing program of the dog genome launched by the National Institute of Health (NIH). To take fully advantage of the canine model, we advocate for the systematic construction of a rich canine single nucleotide polymorphisms (SNP) ressource to perform linkage desiquilibrium studies of normal or pathological traits as well as to get insight into the genetic diversity of the canine species.
Parties annexes
Références
- 1. Clutton-Brock J. Origins of the dog : domestication and early history. In : Serpell J., ed. The domestic dog, its evolution, behaviour and interactions with people. New York : Cambridge University Press, 1995 : 7-20.
- 2. Leonard JA, Wayne RK, Wheeler J, et al. Ancient DNA evidence for old world origin of new world dogs. Science 2002 ; 298 : 1613-6.
- 3. Savolainen P, Zhang YP, Luo J, et al. Genetic evidence for an East Asian origin of domestic dogs. Science 2002 ; 298 : 1610-3.
- 4. Vila C, Savolainen P, Maldonado JE, et al. Multiple and ancient origins of the domestic dog. Science 1997 ; 276 : 1687-9.
- 5. Hare B, Brown M, Williamson C, Tomasello M. The domestication of social cognition in dogs. Science 2002 ; 298 : 1634-6.
- 6. Kaminski J, Call J, Fischer J.∈Word learning in a domestic dog : evidence for « fast mapping ». Science 2004 ; 304 : 1682-3.
- 7. Wayne RK, Vila C. Phylogeny and origin of the domestic dog. In : A. Ruvinsky and J. Sampson, eds. The genetics of the dogs, CABI publishers, 2001 : 1-14.
- 8. Coppinger R. Dogs : a new understanding of canin origin, behaviour and evolution. Chicago University Press, 2001.
- 9. Parker HG, Kim LV, Sutter NB, et al. Genetic structure of the purebred domestic dog. Science 2004 ; 304 : 1160-4.
- 10. Ostrander EA,Giniger, E. Semper fidelis : what man’s best friend can teach us about human biology and disease. Am J Hum Genet 1997 ; 61 : 475-80.
- 11. Galibert F, André C, Chéron A, et al. Intérêt du modèle canin pour la génétique médicale. Bull Acad Natl Med 1998 ; 182 : 818-21.
- 12. Ostrander EA, Galibert F, Patterson DF. Canine genetics comes of age. Trends Genet 2000 ; 16 : 117-23.
- 13. Galibert F, André C. Le génome du chien : un modèle alternatif pour l’analyse fonctionnelle des gènes de mammifères. Bull Acad Natl Med 2002 ; 186 1489-99.
- 14. OMIA : On line mendelian inheritance in animals :http://morgan.angis.su.oz.au/ Databases/BIRX/omia/
- 15. Ettinger SJ, Feldman EC. Texbook of veterinary internal medecine. Saunders publisher, Fourth Edition 1995 : 2 145 p.
- 16. Patterson DF. Companion animal medicine in the age of animal genetics. J Vet Intern Med 2000 ; 14 : 1-9.
- 17. Cargill EJ, Famula TR, Strain GM, Murphy KE. Heritability and segregation analysis of deafness in US Dalmatians. Genetics 2004 ; 166 : 1385-93.
- 18. RetNet : Gènes et locus impliqués dans des anomalies de la rétine :http://www.sph.uth.tmc.edu/Retnet/.
- 19. Lin CT, Gould DJ, Petersen-Jones SM, Sargan DR. Canine inherited retinal degenerations : update on molecular genetic research and its clinical application. J Small Animal Practice 2002 ; 43 : 426-32.
- 20. van De Sluis B, Rothuizen J, Pearson PL, et al. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 2002 ; 11 : 165-73.
- 21. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999 ; 98 : 365-76.
- 22. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000 ; 6 : 991-7.
- 23. Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999 ; 5 : 21-2.
- 24. Bartlett RJ, Stockinger S, Denis MM, et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat Biotechnol 2000 ; 18 : 615-22.
- 25. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in canine model of chilhood blindness. Nat Genet 2001 ; 28 : 92-5.
- 26. Ponder KP, Melniczek JR, Xu L, et al. Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci USA 2002 ; 99 : 13102-7.
- 27. Lingaas F, Sorensen A, Juneja RK, et al. Towards construction of a canine linkage map : establishment of 16 linkage groups. Mamm Genome 1997 ; 8 : 218-21.
- 28. Mellersh CS, Langston AA, Acland C, et al. A linkage map of the canine genome. Genomics 1997 ; 46 : 326-36.
- 29. Walter MA, Spillett DJ, Thomas P, et al. A method for constructing radiation hybrid maps of whole genomes. Nat Genet 1994 ; 7 : 22-8.
- 30. Vignaux F, Hitte C, Priat C, et al. Construction and optimization of a dog whole-genome radiation hybrid panel. Mamm Genome 1999 ; 10 : 888-94.
- 31. Jiang Z, Priat C, Galibert F. Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps. Mamm Genome 1998 ; 9 : 577-87.
- 32. Priat C, Jiang ZH, Renier C, et al. Characterization of 463 type I markers suitable for dog genome mapping. Mamm Genome 1999 ; 10 : 803-13.
- 33. Jouquand S, Priat C, Hitte C, et al. Identification and characterization of a set of 100 tri- and dinucleotide microsatellites in the canine genome. Anim Genet 2000 ; 31 : 266-72.
- 34. Priat C, Hitte C, Vignaux F, et al. A whole-genome radiation hybrid map of the dog genome. Genomics 1998 ; 54 : 361-78.
- 35. Mellersh CS, Hitte C, Richman M, et al. An integrated linkage-radiation hybrid map of the canine genome. Mamm Genome 2000 ; 11 : 120-30.
- 36. Breen M, Jouquand S, Renier C, et al. Chromosome-specific single locus anchorage of a 1 800 marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 2001 ; 11 : 1784-95.
- 37. Guyon R, Lorentzen TD, Hitte C, et al. A 1 Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci USA 2003 ; 100 : 5296-301.
- 38. Données de cartographie du génome canin :http://www-recomgen.univ-rennes1.fr/doggy.html.
- 39. Kirkness EF, Bafna V, Halpern AL, et al. The dog genome : survey sequencing and comparative analysis. Science 2003 ; 301 : 1898-903.
- 40. Ostrander EA, Lindblad-Toh K, Lander ES, et al. Sequencing the genome of the domestic dog Canis familiaris. National Human Genome Research Institute 2002 ;www.genome.gov.
- 41. http://www.ensemble.org/Homo_sapiens/
- 42. Site NIHhttp://www.genome.gov/11008069 et Site du Whitehead Institute :http://www.broad.mit.edu/media/2003/pr_03_tasha.html
- 43. Ostrander EA, Kruglyak L. Unleashing the canine genome. Genome Res 2000 ; 10 : 1271-4.
- 44. Suber ML, Pittler SJ, Qin N, et al. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci USA 1993, 90 : 3968-72.
- 45. Dekomien G, Runte M, Godde R, Epplen JT. Generalized progressive retinal atrophy of Sloughi dogs is due to an 8-bp insertion in exon 21 of the PDE6B gene. Cytogenet Cell Genet 2000 ; 90 : 261-7.
- 46. Petersen-Jones SM, Entz DD, Sargan DR. cGMP phosphodiesterase-alpha mutation causes progressive retinal atrophy in the Cardigan Welsh corgi dog. Invest Ophthalmol Vis Sci 1999 ; 40 : 1637-44.
- 47. Kijas JW, Cideciyan AV, Aleman TS, et al. Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa. Proc Natl Acad Sci USA 2002 ; 99 : 6328-33.
- 48. Zhang Q, Acland GM, Parshall CJ, et al. Characterization of canine photoreceptor phosducin cDNA and identification of a sequence variant in dogs with photoreceptor dysplasia. Gene 1998 ; 215 : 231-9.
- 49. Zangerl B, Zhang Q, Acland GM, Aguirre GD. Characterization of three microsatellite loci linked to the canine RP3 interval. J Hered 2002 ; 93 : 70-3.
- 50. Sidjanin DJ, Lowe JK, McElwee JL, et al. Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3. Hum Mol Genet 2002 ; 11 : 1823-33.
- 51. Veske A, Nilsson SE, Narfstrom K, Gal A. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics 1999 ; 57 : 57-61.