Résumés
Résumé
Selon de nombreuses études in vitro, la cellule endothéliale cardiovasculaire serait capable de percevoir les variations mécaniques de son environnement immédiat - la circulation sanguine - et de les convertir en messages biologiques complexes (remodelage cytosquelettique, régulation de l’expression génique, signalisation intercellulaire). Néanmoins, en raison de la létalité souvent inhérente à l’expérimentation sur le système cardiovasculaire, le rôle de la mécanotransduction des cellules endothéliales in vivo demeure méconnu. De nouvelles expériences de blocage du flux sanguin réalisées chez l’embryon de poisson-zèbre - un modèle animal dont l’oxygénation tissulaire ne dépend pas du système cardiovasculaire - révèlent un rôle essentiel de la mécanotransduction endothéliale dans l’organogenèse, en particulier cardiaque. Ces découvertes suggèrent que certaines cardiomyopathies humaines pourraient résulter d’anomalies de l’hémodynamique et/ou de l’activité transductionnelle des cellules endothéliales, et réaffirment l’importance de la contribution épigénétique dans le contrôle du développement embryonnaire.
Summary
Endothelial cells (EC) of the vertebrate cardiovascular system (CVS) are bona fide, yet enigmatic mechanoreceptors. When cultured in vitro and exposed to fluid forces, EC modify their physiological behaviour at the structural, metabolical and gene expression levels in response to the mechanical stimulus. However, as a direct consequence of the hypoxic bias (and often the lethality) that results from blocking blood flow in most animal systems, the in vivo role of EC mechanosensation (ECMS) remains poorly understood. The zebrafish has recently emerged as an alternative genetic model for the study of vertebrate development. Its striking ability to survive until larval stages in the absence of blood circulation circumveys the usual caveats that are inherent to CVS research, and offers the exciting opportunity to dissect the function of ECMS in vivo. Two groups have already uncovered an essential role for ECMS in zebrafish organogenesis, particularly in heart morphogenesis. In embryos in which intracardiac blood flow is genetically or physically compromised, several features of the normally developing heart, including valve formation, are specifically disrupted. In addition, impressive imaging studies of zebrafish hemodynamics demonstrate that the shear stress exerted upon the cardiac endothelium is largely in the range of the stimulus that in vitro activates cytoskelettal remodeling and gene expression changes in EC. Hence the cardiac phenotypes observed in vivo may indeed directly result from a lack of ECMS-dependent EC activity. These data shed first light on the role of ECMS in vivo. Notably, they also suggest that a number of human congenital cardiomyopathies may arise through abnormal fetal hemodynamics and/or EC sensory activity. Finally, these discoveries reinforce the too often neglected role of epigenetic factors (in this case, fluid forces) in the regulation of animal development.
Parties annexes
Références
- 1. Gillespie PG, Walker RG. Molecular basis of mechanosensory transduction. Nature 2001 ; 413 : 194-202.
- 2. Ernstrom GG, Chalfie M. Genetics of sensory mechanotransduction. Annu Rev Genet 2002 ; 36 : 411-53.
- 3. Topper JN, Gimbrone MA, Jr. Blood flow and vascular gene expression : fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 1999 ; 5 : 40-6.
- 4. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995 ; 75 : 519-60.
- 5. Serluca FC, Drummond IA, Fishman MC. Endothelial signaling in kidney morphogenesis : a role for hemodynamic forces. Curr Biol 2002 ; 12 : 492-7.
- 6. Hove JR, Koster, RW, Forouhar AS, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003 ; 421 : 172-7.
- 7. Topper JN, Cai J, Falb D, Gimbrone MA, Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli : cyclooxygenase-2, manganese superoxyde dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci USA 1996 ; 93 : 10417-22.
- 8. Stainier DYR, Fishman MC. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc Med 1994 ; 4 : 207-12.
- 9. Stainier DYR. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2001 ; 1 : 39-48.
- 10. Pelster B, Burggren WW. Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebrafish. Circ Res 1996 ; 79 : 358-62.
- 11. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996 ; 123 : 1-36.
- 12. Eisen JS. Zebrafish make a big splash. Cell 1996 ; 87 : 969-77.
- 13. Drummond IA, Majumdar A, Hentschel H, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 1998 ; 125 : 4655-67.
- 14. Serluca FC, Fishman MC. Pre-pattern in the pronephric kidney field of zebrafish. Development 2001 ; 128 : 2233-41.
- 15. Xu X, Meiler SE, Zhong TP, et al. Cardiomyopathy in zebrafish due to a mutation in an alternatively spliced exon of titin. Nat Genet 2002 ; 30 : 205-9.
- 16. Rottbauer W, Baker K, Wo ZG, et al. Growth and function of the embryonic heart depend on the cardiac-specific L-type calcium channel a1 subunit. Dev Cell 2001 ; 1 : 265-75.
- 17. Sehnert AJ, Huq A, Weinstein BM, et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 2002 ; 31 : 106-10.
- 18. Hiraoka N, Allen E, Apel IJ, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998 ; 95 : 365-77.
- 19. Bassiouny HS, Song RH, Hong XF, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 1998 ; 98 : 157-63.
- 20. Taber LA. Mechanical aspects of cardiac development. Prog Biophys Mol Biol 1998 ; 69 : 237-55.
- 21. Bahary N, Zon LI. Endothelium-chicken soup for the endoderm. Science 2001 ; 294 : 530-1.
- 22. Walsh EC, Stainier DYR. UDP-glucose deshydrogenase required for cardiac valve formation in zebrafish. Science 2001 ; 293 : 1670-3.
- 23. Olesen SP, Clapham DE, Davies PF. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 1988 ; 331 : 168-70.
- 24. Berdougo E, Coleman H, Lee DH, et al. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 2003 ; 130 : 6121-9.