Résumés
Résumé
Parmi les canaux ioniques, les canaux sélectifs pour l’ion K+ constituent la famille la plus vaste et la plus diversifiée. Dans le cerveau, ils contrôlent l’excitabilité neuronale et la libération de neurotransmetteurs. Dans les cellules non-excitables, ils contribuent à l’homéostasie du K+ et à la régulation du volume cellulaire. Les canaux à deux domaines P, appelés canaux K2P, forment l’une des trois grandes classes structurales de canaux K+. Ces canaux sont largement exprimés dans les systèmes nerveux central et périphérique. Ils produisent des courants instantanés et indépendants du potentiel qui sont qualifiés de courants de fond. La régulation des canaux K2P par les neurotransmetteurs et les hormones, et par une large variété de stimulus physiques et chimiques s’accompagne de profonds changements de l’excitabilité neuronale. L’activation de ces canaux K2P par les anesthésiques volatils et par des agents neuroprotecteurs suggère qu’ils constituent des cibles intéressantes pour le développement de nouveaux médicaments.
Summary
Background K+ conductances are a major determinant of membrane resting potential and input resistance, two key components of neuronal excitability. Background channels have been cloned and form a K+ channel family structurally different from Kv, KCa and Kir channels. These channels with 2P domains (K2P channels) are voltage- and time-independent. They are relatively insensitive to classical potassium channels blockers such as TEA, 4-AP, Ba2+ and Cs+. TASK and TREK subunits are widely expressed in the nervous system. Open at rest, these channels mainly contribute to the resting potential of somatic motoneurons, brainstem respiratory and chemoreceptor neurones, and cerebellar granule cells. K2P channels are regulated by numerous physical and chemical stimuli including extracellular and intracellular pH, temperature, hypoxia, pressure, bioactive lipids, and neurotransmitters. The regulation of these background K+ channels profoundly alters the neuronal excitability. For example, in Aplysia, regulation of a background potassium conductance by neurotransmitters is involved in synaptic modulation, a simple and primitive form of learning. The recent discovery that clinical compounds such as volatile anaesthetics and other neuroprotective agents including riluzole and unsaturated fatty acids activate K2P channels suggest that neuronal background K+ channels are attractive targets for the development of new drugs.
Parties annexes
Références
- 1. Hille B. Ionic channels in excitable membranes. Sunderland : Sinauer Associates Inc, 1992 : 608 p.
- 2. Coetzee WA, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels. Ann NY Acad Sci 1999 ; 868 : 233-85.
- 3. Jan LY, Jan YN. Voltage-gated and inwardly rectifying potassium channels. J Physiol 1997 ; 505 : 267-82.
- 4. Yamada M, Inanobe A, Kurachi Y. G protein regulation of potassium ion channels. Pharmacol Rev 1998 ; 50 : 723-60.
- 5. Lesage F, Guillemare E, Fink M, et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 1996 ; 15 : 1004-11.
- 6. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 2000 ; 279 : F793-801.
- 7. Patel AJ, Honore E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001 ; 24 : 339-46.
- 8. Lesage F, Reyes R, Fink M, et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. Embo J 1996 ; 15 : 6400-7.
- 9. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology 2003 ; 44 : 1-7.
- 10. Talley EM, Solorzano G, Lei Q, et al. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 2001 ; 21 : 7491-505.
- 11. Girard C, Tinel N, Terrenoire C, et al. p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. Embo J 2002 ; 21 : 4439-48.
- 12. Rajan S, Preisig-Muller R, Wischmeyer E, et al. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 2002 ; 545 : 13-26.
- 13. Maingret F, Patel AJ, Lazdunski M, Honore E. The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. Embo J 2001 ; 20 : 47-54.
- 14. Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. Embo J 1997 ; 16 : 5464-71.
- 15. Rajan S, Wischmeyer E, Xin Liu G, et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 2000 ; 275 : 16650-7.
- 16. Lesage F, Terrenoire C, Romey G, Lazdunski M. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000 ; 275 : 28398-405.
- 17. Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 2000 ; 25 : 399-410
- 18. Millar JA, Barratt L, Southan AP, et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad SciUSA 2000 ; 97 : 3614-8
- 19. Brickley SG, Revilla V, Cull-Candy SG, et al. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 2001 ; 409 : 88-92.
- 20. Han J, Truell J, Gnatenco C, Kim D. Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 2002 ; 542 : 431-44.
- 21. Lauritzen I, Blondeau N, Heurteaux C, et al. Polyunsaturated fatty acids are potent neuroprotectors. Embo J 2000 ; 19 : 1784-93.
- 22. Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 2001 ; 129 : 159-74.
- 23. Buckler KJ, Williams BA, Honore E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 2000 ; 525 : 135-42.
- 24. Maingret F, Lauritzen I, Patel AJ, et al. TREK-1 is a heat-activated background K+ channel. Embo J 2000 ; 19 : 2483-91.
- 25. Patel AJ, Honore E, Lesage F, et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 1999 ; 2 : 422-6.
- 26. Washburn CP, Sirois JE, Talley EM, et al. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 2002 ; 22 : 1256-65.
- 27. Sirois JE, Lynch IC, Bayliss DA. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 2002 ; 541 : 717-29.
- 28. Blondeau N, Lauritzen I, Widmann C, et al. A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 2002 ; 22 : 821-34.
- 29. Gnatenco C, Han J, Snyder AK, Kim D. Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res 2002 ; 931 : 56-67.
- 30. Duprat F, Lesage F, Patel AJ, et al. The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 2000 ; 57 : 906-12.