Résumés
Résumé
Chez les animaux à reproduction sexuée, les gamètes proviennent d’une petite population cellulaire apparaissant très tôt au cours du développement embryonnaire, les cellules germinales primordiales (PGC). Ces cellules représentent une population cellulaire clé responsable de la survie et de l’évolution des espèces. En effet, la production de gamètes permet la fécondation et donc l’établissement de la génération suivante. Chez les mammifères, l’étude des PGC est restée, jusqu’à peu, très confidentielle. Elles ont récemment acquis un nouvel intérêt dans la mesure où il est possible d’en dériver des cellules pluripotentes, les cellules germinales embryonnaires (EGC), dont les caractéristiques sont très proches de celles des cellules souches embryonnaires (ESC).
Summary
In sexually reproducing animals all gametes of either sex arise from primordial germ cells (PGC). PGC represent a small cell population, appearing early during embryo development. They represent a key cell population responsible for the survival and the evolution of a species. Indeed, the production of gametes will assure fertilisation and therefore the establishment of the next generation. Until recently only few laboratories were working on PGC biology. A new interest emerged since these cells have the ability to function as pluripotent stem cells when established as cell lines. Indeed, like embryonic stem cells (ESC), embryonic germ cells (EGC) are able to differentiate in a wide variety of tissues. In vivo, EGC are able, after injection into a host blastocyst cavity to colonise the inner cell mass and to participate in embryonic development. In vitro studies in human and mouse have also shown their capacity to differentiate into a large variety of cell types allowing the study of processes involved in cardiomyocyte, haematopoietic, neuronal and myogenic differentiation pathways. We present here the last updates of PGC ontogeny focusing mainly on the murine model.
Parties annexes
Références
- 1. Kerr DA, Llado J, Shamblott MJ, et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 2003 ; 23 : 5131-40.
- 2. Durcova-Hills G, Wianny F, Merriman J, et al. Developmental fate of embryonic germ cells (EGCs), in vivo and in vitro. Differentiation 2003 ; 71 : 135-41.
- 3. Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines : Transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 1994 ; 120 : 3197-204.
- 4. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998 ; 95 : 13726-31.
- 5. Shamblott MJ, Axelman J, Littlefield JW, et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 2001 ; 98 : 113-8.
- 6. Gearhart J. New potential for human embryonic stem cells. Science 1998 ; 282 : 1061-2.
- 7. Dixon KE. Evolutionary aspects of primordial germ cell formation. Ciba Found Symp 1994 ; 182 : 92-110 ; discussion 110-20.
- 8. Starz-Gaiano M, Lehmann R. Moving towards the next generation. Mech Dev 2001 ; 105 : 5-18.
- 9. Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germ cell development. Cell Struct Funct 2001 ; 26 : 131-6.
- 10. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 1994 ; 182 : 68-84 ; discussion 84-91.
- 11. Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002 ; 418 : 293-300.
- 12. Mintz B, Russell ES. Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Zool 1957 ; 134 : 207-37.
- 13. Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development 1990 ; 110 : 521-8.
- 14. Hahnel A , Eddy E. Cell surface markers of mouse primordial germ cells defined by two monoclonal antibodies. Gamete Res 1986 ; 15 : 25-34.
- 15. Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 1996 ; 178 : 124-32.
- 16. Yoshimizu T, Obinata M, Matsui Y. Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 2001 ; 128 : 481-90.
- 17. McLaren A. Signaling for germ cells. Genes Dev 1999 ; 13 : 373-6.
- 18. Lawson KA, Dunn NR, Roelen BA, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999 ; 13 : 424-36.
- 19. Fujiwara T, Dunn NR, Hogan BL. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci USA 2001 ; 98 : 13739-44.
- 20. Zhao GQ, Deng K, Labosky PA, et al. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 1996 ; 10 : 1657-69.
- 21. Ying Y, Liu XM, Marble A, et al. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 2000 ; 14 : 1053-63.
- 22. Ying Y, Qi X, Zhao GQ. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci USA 2001 ; 98 : 7858-62.
- 23. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 2001 ; 232 : 484-92.
- 24. Tremblay KD, Dunn NR, Robertson EJ. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 2001 ; 128 : 3609-21.
- 25. Chang H, Matzuk MM. Smad5 is required for mouse primordial germ cell development. Mech Dev 2001 104 : 61-7.
- 26. Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003 ; 300 : 1251-6.
- 27. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003 ; 100 : 11457-62.
- 28. Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004 ; 427 : 148-54.
- 29. Anderson R, Copeland TK, Scholer H, et al. The onset of germ cell migration in the mouse embryo. Mech Dev 2000 ; 91 : 61-8.
- 30. Gomperts M, Garcia-Castro M, Wylie C, Heasman J. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 1994 ; 120 : 135-41.
- 31. Godin I, Wylie C, Heasman J. Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 1990 ; 108 : 357-63.
- 32. Garcia-Castro MI, Anderson R, Heasman J, Wylie C. Interactions between germ cells and extracellular matrix glycoproteins during migration and gonad assembly in the mouse embryo. J Cell Biol 1997 ; 138 : 471-80.
- 33. Anderson R, Fassler R, Georges-Labouesse E, et al. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 1999 ; 126 : 1655-64.
- 34. Bendel-Stenzel MR, Gomperts M, Anderson R, et al. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech Dev 2000 ; 91 : 143-52.
- 35. Williams DE, de Vries P, Namen AE, et al. The Steel factor. Dev Biol 1992 ; 151 : 368-76.
- 36. Grant M, Zuccotti M, Monk M. Methylation of CpG sites of two X-linked genes coincides with X-inactivation in the female mouse embryo but not in the germ line. Nat Genet 1992 ; 2 : 161-6.