Résumés
Résumé
L’imagerie cellulaire et tissulaire connaît un développement considérable résultant à la fois de l’attente des scientifiques et des progrès concertés de nombreuses disciplines. Le développement de la microscopie confocale, de la vidéomicroscopie, de nouveaux fluorochromes, notamment des dérivés de la GFP (green fluorescent protein), et de nouveaux logiciels permettent d’accéder à la visualisation tridimensionnelle des processus biologiques. Leur quantification à l’échelle de la cellule unique est maintenant possible. L’imagerie cellulaire fournit des résultats pertinents sur la stoechiométrie et la dynamique des interactions moléculaires impliquées dans les régulations cellulaires. Des progrès importants ont également été réalisés dans l’optimisation de la résolution temporelle. À l’époque de la post-génomique, une utilisation rationnelle des approches d’imagerie passe par une bonne connaissance de leurs avantages et de leurs limites.
Summary
Cell and tissue imaging provides scientists with wonderful tools, thanks to a fruitful dialog between chemistry, optical, mechanical, computational sciences and biology. Confocal microscopy, videomicroscopy together with a new generation of fluorochromes (especially those derived from green fluorescent protein, GFP) and image analysis software allow to visualize life in all its dimensions (space and time). Cell imaging also allows to quantify biological processes at the cellular level, to analyse both stoechiometry and dynamics of molecular interactions involved in cell and tissue regulations. Entering the new era of post-genomics requires a better knowledge of advantages and limitations of these new approaches.
Parties annexes
Références
- 1. Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998 ; 67 : 509-44.
- 2. Cubbitt AB, Heim R, Adams SR, et al. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 1995 ; 20 : 448-55.
- 3. Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999 ; 17 : 969-73.
- 4. Welsh S, Kay SA. Reporter gene expression for monitoring gene transfer. Curr Opin Biotechnol 1997 ; 8 : 617-22.
- 5. Galvez S, Roche O, Bismuth E, et al. Mitochondrial localization of a NADP-dependent [corrected] isocitrate dehydrogenase isoenzyme by using the green fluorescent protein as a marker. Proc Natl Acad Sci USA 1998 ; 95 : 7813-8.
- 6. Chiesa A, Rapizzi E, Tosello V, et al. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J 2001 ; 355 : 1-12.
- 7. Chamberlain C, Hahn KM. Watching proteins in the wild : Fluorescence methods to study protein dynamics in living cells. Traffic 2000 ; 1 : 755-62.
- 8. Chen Y, Sanford MS. In situ biochemical demonstration that P-glycoprotein is a drug efflux pump with broad specificity. J Cell Biol 2000 ; 148 : 863-70.
- 9. Presley JF, Cole NB, Schroer TA, et al. ER-to-Golgi transport visualized in living cells. Nature 1997 ; 389 : 81-5.
- 10. Reits EA, Neefjes JJ. From fixed to FRAP : Measuring protein mobility and activity in living cells. Nat Cell Biol 2001 ; 3 : E145-7.
- 11. Oancea E, Meyer T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 1998 ; 95 : 307-18.
- 12. Oancea E, Teruel MN, Quest AF, Meyer T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J Cell Biol 1998 ; 140 : 485-98.
- 13. Wouters FS, Verveer PJ, Bastiaens PI. Imaging biochemistry inside cells. Trends Cell Biol 2001 ; 11 : 203-11.
- 14. Verveer PJ, Wouters FS, Reynold AR, Bastiaens PI. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 2000 ; 290 : 1567–70.
- 15. Truong K, Ikura M. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 2001 ; 11 : 573-8.
- 16. Klaus Hahn K, Toutchkine A. Live-cell fluorescent biosensors for activated signaling proteins. Curr Opin Cell Biol 2002 ; 14 : 167-73.
- 17. Miyawaki A, Llopis J, Heim R, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997 ; 388 : 882-7.
- 18. Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system : application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999 ; 96 : 151-6.
- 19. De Angelis DA, Miesenböck G, Zemelman BV, Rothman JJ. PRIM : Proximity imaging of green fluorescent protein-tagged polypeptides. Proc Natl Acad Sci USA 1998 ; 95 : 12312–6.
- 20. Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998 ; 394 : 192-5.
- 21. Verkhusha VV, Otsuna H, Awasaki T, et al. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. J Biol Chem 2001 ; 276 : 29621-4.
- 22. Wang SS, Augustine GJ. Confocal imaging and local photolysis of caged compounds : Dual probes and synaptic function. Neuron 1995 ; 15 : 755-60.
- 23. Brown EB, Shear JB, Adams SR, et al. Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 1999 ; 76 : 489-99.
- 24. Zlokarnik G, Negulescu PA, Knapp TE, et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 1998 ; 279 : 84-8.