Résumés
Résumé
L’immunothérapie anti-infectieuse par anticorps suscite un regain d’intérêt en raison de l’augmentation de la résistance aux antibiotiques et de l’absence de thérapies contre la majorité des infections virales. Les immunoglobulines intraveineuses (IVIG), par leur large spectre d’activité, les IVIG hyperimmunes, en raison de leur forte concentration en anticorps spécifiques, et les anticorps monoclonaux qui reconnaissent un épitope sélectionné, sont capables de neutraliser de nombreux agents infectieux. L’immunothérapie des infections respiratoires utilise la capacité des anticorps de neutraliser les micro-organismes inhalés et leurs produits cytopathogènes. Leur administration préventive (immunoprophylaxie) s’avère beaucoup plus efficace que leur administration curative, par le fait qu’elle inhibe les étapes précoces du processus infectieux. L’efficacité des anticorps administrés par voie topique, qui requiert des doses inférieures à celles de la voie systémique, et les nouvelles technologies de fabrication d’anticorps monoclonaux humanisés, offrent de réelles perspectives dans le traitement préventif et curatif des maladies infectieuses - en particulier respiratoires - actuelles ou émergentes.
Summary
Anti-infective antibody-based immunotherapy has gained renewed interest since the crisis of antibiotic resistance and because there is no therapy against various viral infections. The immunoprophylaxis of respiratory infections aims to utilize the ability of local antibodies to neutralize inhaled micro-organisms and their cytopathic products. Immunoglobulins for intravenous use (IVIG) have a wide spectrum of specificities. Hyperimmune IVIG containing high titers of specific antibodies have demonstrated efficacy in clinical trials, notably against the respiratory syncytial virus. Monoclonal antibodies have the advantage to be homogenous and specific for one selected epitope and several studies have demonstrated their efficacy to neutralize several infectious agents. Moreover, antibodies can be administered topically and are effective at lower doses than those needed for systemic administration. The mechanism of action could be the agglutination of bacteria or viruses at the epithelial surfaces of the respiratory tract inhibiting the early steps of the infectious process. Thanks to new technologies of humanized monoclonal antibodies, immunotherapy offers real promizing perspectives for prophylactic and therapeutic therapies against a variety of current or emerging infectious diseases.
Parties annexes
Références
- 1. Silverstein AM. History of immunology. In : Paul WE, ed. Fundamental immunology. New York : Raven Press, 1984 : 23-40.
- 2. Casadevall A, Scharff MD. Return to the past : the case for antibody-based therapies in infectious diseases. Clin Infect Dis 1995 ; 21 : 150-61.
- 3. Lister PD. Emerging resistance problems among respiratory tract pathogens. Am J Manag Care 2000 ; 6 : S409-18.
- 4. Busse PJ, Razvi S, Cunningham-Rundles C. Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J Allergy Clin Immunol 2002 ; 109 : 1001-4.
- 5. Hammarström L, Gardulf A, Hammarström V, et al. Systemic and topical immunoglobulin treatment in immunocompromised patients. Immunol Rev 1994 ; 139 : 43-70.
- 6. Enarson DA, Chretien J. Epidemiology of respiratory infectious diseases. Curr Opin Pulm Med 1999 ; 5 : 128-35.
- 7. Reynolds HY. Normal and defective respiratory host defenses. In : Pennington JE, ed. Respiratory infections. New York : Raven Press, 1994 : 1-33.
- 8. Lamari F, Karamanos NK, Papadopoulou-Alataki E, et al. Monitoring of two intravenous immunoglobulin. Preparations for immunoglobulin G subclasses and specific antibodies to bacterial surface antigens and relation with their levels in treated immunodeficient patients. J Pharm Biomed Anal 2000 ; 22 : 1029-36.
- 9. Groothuis JR, Simoes EA, Levin MJ, et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The respiratory syncytial virus immune globulin study group. N Engl J Med 1993 ; 329 : 1524-30.
- 10. Baker JC, Melish ME, Hall RT, et al. Intravenous immune globulin for the prevention of nosocomial infection in low-birth-weight neonates. The multicenter group for the study of immune globulin in neonates. N Engl J Med 1992 ; 327 : 213-9.
- 11. Fanaroff AA, Korones SB, Wright LL, et al. A controlled trial of intravenous immune globulin to reduce nosocomial infections in very-low-birth-weight infants. National institute of child health and human development neonatal research network. N Engl J Med 1994 ; 330 : 1107-13.
- 12. Spector SA, Gelber RD, McGrath N, et al. A controlled trial of intravenous immune globulin for the prevention of serious bacterial infections in children receiving zidovudine for advanced human immunodeficiency virus infection. Pediatric AIDS clinical trials group. N Engl J Med 1994 ; 331 : 1181-7.
- 13. Douzinas EE, Pitaridis MT, Louris G, et al. Prevention of infection in multiple trauma patients by high dose intravenous immunoglobulins. Crit Care Med 2000 ; 28 : 8-15.
- 14. Conti DJ, Freed BM, Gruber SA, Lempert N. Prophylaxis of primary cytomegalovirus disease in renal transplant recipients. A trial of ganciclovir vs immunoglobulin. Arch Surg 1994 ; 129 : 443-7.
- 15. Granström M, Olinder-Nielsen AM, Holmblad P, et al. Specific immunoglobulin for treatment of whooping cough. Lancet 1991 ; 338 : 1230-3.
- 16. De Hennezel L, Ramisse F, Binder P, et al. Effective combination therapy for invasive pneumococcal pneumonia with ampicillin and intravenous immunoglobulins in a mouse model. Antimicrob Agents Chemother 2001 ; 45 : 316-8.
- 17. Weltzin R, Monath TP. Intranasal antibody prophylaxis for protection against viral disease. Clin Microbiol Rev 1999 ; 12 : 383-93.
- 18. Zeitlin L, Cone RA, Whaley KJ. Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg Infect Dis 1999 ; 5 : 54-64.
- 19. Ma JK, Hunjan M, Smith R, et al. An investigation into the mechanism of protection by local passive immunization with monoclonal antibodies against Streptococcus mutans. Infect Immun 1990 ; 58 : 3407-14.
- 20. Ramisse F, Deramoudt FX, Szatanik M, et al. Effective prophylaxis of influenza A virus pneumonia in mice by topical passive immunotherapy with polyvalent human immunoglobulins or F(ab’)2 fragments. Clin Exp Immunol 1998 ; 111 : 583-7.
- 21. Mazanec MB, Kaetzel CS, Lamm ME, et al. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 1992 ; 89 : 6901-5.
- 22. Lombry C, Edwards DA, Preat V, Vanbever R. Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am J Physiol Lung Cell Mol Physiol 2004 ; 286 : L1002-8.
- 23. Ramisse F, Szatanik M, Binder P, Alonso JM. Passive local immunotherapy of experimental staphylococcal pneumonia with human intravenous immunoglobulin. J Infect Dis 1993 ; 168 : 1030-3.
- 24. Ramisse F, Binder P, Szatanik M, Alonso JM. Passive and active immunotherapy of experimental pneumococcal pneumonia by polyvalent human immunoglobulin or F(ab’)2 fragments administered intranasally. J Infect Dis 1996 ; 173 : 1123-8.
- 25. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Ann Rev Immunol 1994 ; 12 : 433-55.
- 26. Breedveld FC. Therapeutic monoclonal antibodies. Lancet 2000 ; 355 : 735-40.
- 27. Weltzin R, Traina-Dorge V, Soike K, et al. Intranasal monoclonal IgA antibody to respiratory syncytial virus protects rhesus monkeys against upper and lower respiratory tract infection. J Infect Dis 1996 ; 174 : 256-61.
- 28. Johnson S, Griego SD, Pfarr DS, et al. A direct comparison of the activities of two humanized respiratory syncytial virus monoclonal antibodies : MEDI-493 and RSHZ19. J Infect Dis 1999 ; 180 : 35-40.
- 29. Gavilondo JV, Larrick JW. Antibody engineering at the millenium. Biotechniques 2000 ; 29 : 128-45.