Résumés
Résumé
Le récepteur du Ca2+ extracellulaire (CaR), localisé à la membrane de la cellule parathyroïdienne, répond aux fluctuations des ions Ca2+ sériques et contrôle l’homéostasie calcique. Il appartient à la classe III des récepteurs couplés aux protéines G. Son activité est contrôlée par divers ions divalents et trivalents, mais aussi par des molécules endogènes telles que les acides aminés aromatiques de forme L ou la spermine. Le développement de molécules calcimimétiques capables de potentialiser les actions du Ca2+ sur le CaR et de réduire la concentration de la parathormone circulante in vivo, ainsi que des études cliniques récentes, suggèrent qu’il constitue une nouvelle cible thérapeutique pour le traitement des hyperparathyroïdies primaires et secondaires. Les calcilytiques bloquent le CaR et stimulent la sécrétion de parathormone. Ces nouvelles molécules, qui agissent au niveau des sept domaines transmembranaires du CaR, devraient permettre de caractériser les fonctions physiologiques associées au CaR et aux ions Ca2+ extracellulaires dans divers tissus tels que le rein, l’os ou le cerveau.
Summary
The extracellular calcium-sensing receptor (CaR) belongs to class III of G-protein coupled receptors. The CaR is expressed at the surface of the parathyroid cells and plays an essential role in the regulation of Ca2+ homeostasis through the control of parathyroid secretion. The CaR is activated by Ca2+ and Mg2+ present in the extracellular fluids, various di- and trivalent cations, L-aminoacids and charged molecules including several antibiotics. Calcimimetics potentiate the effect of Ca2+ and are proposed to be of therapeutic benefit for the treatment of both primary and secondary hyperparathyroidism. Calcilytics block the Ca2+-induced activation of the CaR. Three-dimensional models of the seven transmembrane domains of the human CaR have been used to identify specific residues implicated in the recognition of calcimimetics and calcilytics. These molecules should be useful for delineating the physiological roles played by the CaR in several tissues and for clarifying the direct effects attributed to extracellular Ca2+.
Parties annexes
Références
- 1. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling.Physiol Rev 2001 ; 81 : 239-97.
- 2. Brown EM, Camba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid.Nature 1993 ; 366 : 575-80.
- 3. Ruat M, Molliver ME, Snowman AM, Snyder SH. Calcium sensing receptor : molecular cloning in rat and localization to nerve terminals.Proc Natl Acad Sci USA 1995 ; 92 : 3161-5.
- 4. Kunishima N, Schimada Y, Tsuji Y, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor.Nature 2000 ; 407 : 971-7.
- 5. Pin JP, Galvez T, Prezeau L. Evolution, structure and activation mechanism of family 3/C G-protein-coupled receptors.Ther Pharmacol 2003 ; 98 : 325-54.
- 6. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.Cell 1993 ; 75 : 1297-303.
- 7. Pollak MR, Brown EM, Estep HL, et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation.Nat Genet 1994 ; 8 : 303-7.
- 8. Hu J, Spiegel AM. Naturally occurring mutations of the extracellular Ca2+-sensing receptor : implications for its structure and function.Trends Endocrinol Metab 2003 ; 14 : 282-8.
- 9. Shoback D, Thatcher J, Leombruno R, Brown E. Effects of extracellular Ca++ and Mg++ on cytosolic Ca++ and PTH release in dispersed bovine parathyroid cells.Endocrinology 1983 ; 113 : 424-6.
- 10. Ruat M, Snowman AM, Hester LD, Snyder SH. Cloned and expressed rat Ca2+-sensing receptor.J Biol Chem 1996 ; 271 : 5972-5.
- 11. Zhang Z, Sun S, Quinn SJ, et al. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions.J Biol Chem 2001 ; 2000 : 7.
- 12. Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.N Engl J Med 2004 ; 350 : 459-68.
- 13. Ye CP, Ho-Pao Cl, Kanazirska M, et al. Amyloid-beta proteins activate Ca2+-permeable annels through calcium-sensing receptors.J Neurosci Res 1997 ; 7 : 547-54.
- 14. Conigrave AD, Quinn SJ, Brown EM. L-amino acid sensing by the extracellular Ca2+-sensing receptor.Proc Natl Acad Sci USA 2000 ; 97 : 4814-9.
- 15. Zhang Z, Qiu W, Quinn SJ, et al. Three adjacent serines in the extracellular domains of the CaR are required for L-amino acid-mediated potentiation of receptor function.J BiolChem 2002 ; 277 : 33727-35.
- 16. Ferry S, Traiffort E, Stinnakre J, Ruat M. Developmental and adult expression of rat calcium-sensing receptor transcripts in neurons and oligodendrocytes.Eur J Neurosci 2000 ; 12 : 872-84.
- 17. Nemeth EF. Pharmacological regulation of parathyroid hormone secretion.Curr PharmDes 2002 ; 8 : 2077-87.
- 18. Ferry S, Chatel B, Dodd RH, et al. Effects of divalent cations and of a calcimimetic on adrenocorticotropic hormone release in pituitary tumor cells.Biochem Biophys Res Commun 1997 ; 238 : 866-73.
- 19. Nemeth EF, Steffey ME, Hammerland LG, et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor.Proc Natl Acad Sci USA 1998 ; 95 : 4040-45.
- 20. Petrel C, Kessler A, Dauban P, et al. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain.J Biol Chem 2004 ; 279 : 18990-7.
- 21. Gowen M, Stroup GB, Dodds RA, et al. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats.J ClinInvest 2000 ; 105 : 1595-604.
- 22. Petrel C, Kessler A, Malash F, et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor.J Biol Chem 2003 ; 278 : 49487-94.
- 23. Nemeth EF,Delmar EG, Heaton WL, et al. Calcilytic compounds: Potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone.J Pharmacol ExpTher 2001 ; 299 : 323-31.
- 24. Seeman E, Delmas PD. Reconstructing the skeleton with intermittent parathyroid hormone. Trends Endocrinol Metab 2001 ; 12 : 281-3.
- 25. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin : a G protein-coupled receptor.Science 2000 ; 289 : 739-45.
- 26. Miedlich SU, Gama l, Seuwen K, et al. Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site.J BiolChem 2004 ; 279 : 7254-63.
- 27. Ray K, Northup J. Evidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor.J Biol Chem 2002 ; 277 : 18908-13.
- 28. Hu J, Reyes-Cruz G, Chen W, et al. Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator.J Biol Chem 2002 ; 277 : 46622-31.