Résumés
Résumé
La phénylcétonurie est une maladie métabolique héréditaire très fréquente, transmise sur le mode autosomique récessif. Elle est due à un déficit partiel ou total en phénylalanine hydroxylase (PAH), enzyme permettant la transformation de la phénylalanine en tyrosine. L’excès de phénylalanine est toxique pour le système nerveux central. Le traitement consiste en un régime pauvre en phénylalanine instauré dès le dépistage de la maladie. En l’absence de traitement, ou si celui-ci est instauré tardivement, des troubles neurologiques et comportementaux, ainsi qu’un retard mental, sont fréquemment observés. La variabilité phénotypique cognitive et clinique, observée parfois au sein d’une même famille, suggère l’existence d’un gène modificateur. Le gène codant pour la monoamine oxydase de type B (MAOB), enzyme dégradant la phényléthylamine - un métabolite très toxique de la phénylalanine - pourrait être impliqué dans la genèse des troubles neurologiques précoces et dans la variabilité phénotypique observée chez les patients phénylcétonuriques.
Summary
Phenylketonuria (PKU), the most frequent inborn error of metabolism (1/15,000 live births), is an autosomal recessive condition caused by phenylalanine hydroxylase deficiency. Despite early and strict dietary control, some PKU children still exhibit behavioral and cognitive difficulties suggestive of a partly prenatal brain injury. The reported variability between the cognitive and clinical phenotypes within the same family raises the question of modifying genes in PKU. We suggest here that monoamine oxidase type B, MAOB, an enzyme degrading phenylethylamine, a very toxic metabolite of phenylalanine, could act as a modifying gene since a variant enzymatic activity of MAOB in PKU patients with similar phenylalanine levels would result in different phenylethylamine levels and different clinical outcomes. Finally the report of low MAOB, and consequently expectedly high phenylethylamine levels in neonates is consistent with a phenylethylamine-mediated brain injury possibly causing irreversible damages in PKU newborns prior to onset of the low protein diet.
Parties annexes
Références
- 1. Scriver CR, Kaufman S. Hyperphenlylalaninemia : phenylalanine hydroxylase deficiency. In : Scriver CR, Baudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease, chapter 77. New York : McGraw Hill, 2001 : 1671.
- 2. Abadie V, Rey F, Plainguet F, Rey J. Évolution intellectuelle après relâchement du régime à l’âge de 5 ans dans la phénylcétonurie typique. Arch Fr Pediatr 1992 ; 49 : 773-8.
- 3. Burgard P, Schmidt E, Rupp A, et al. Intellectual development of the patients of the German collaborative study of children treated for phenylketonuria. Eur J Pediatr 1996 ; 155 (suppl 1) : S33-8.
- 4. Hommes FA. Loss of neurotransmitter receptors by hyperphenylalaninemia in the HPH-5 mouse brain. Acta Paediatr 1992 ; 907 (suppl) : 120-1.
- 5. Meli C, Garozzo R, Mollica F, et al. Different clinical manifestations in siblings with identical phenylalanine hydroxylase genes mutations. J Inher Metab Dis 1998 ; 21 (suppl 2) : 10.
- 6. Gizewska M, Zekanowski C, Cyriowski L, et al. Different presentation of late-detected PKU in two brothers with the same R408W/R111X mutations in PAH gene. J Inher Metab Dis 2001 ; 24 (suppl 1) : 22.
- 7. Jepson JB, Lovenberg W, Zaltzman P, et al. Conversion of phenylalanine to phenylethylamine in patients with phenylketonuria. Biochem J 1960 ; 74 : 5.
- 8. Oates JA, Nirenberg PZ, Jepson JB, et al. Amine metabolism, studied in normal and phenylketonuric humans by monoamine oxydase inhibition. Proc Soc Exp Biol Med 1963 ; 112 : 1078-81.
- 9. Michals K, Matalon R. Phenylalanine metabolites, attention span and hyperactivity. Am J Clin Nutr 1985 ; 42 : 361-5.
- 10. Paterson IA, Juorio AV, Boulton AA. 2-Phenylethylamine : a modulator of catecholamine transmission in the mammalian central nervous system ? J Neurochem 1990 ; 55 : 1827-37.
- 11. Blau K. The significance of phenylethylamine in phenylketonuria and related disorders. In : Mosnaïm AD, Wolf ME, eds. Noncatecholic phenylethylamines. Part I. Phenylethylamine : biological mechanisms and clinical aspects. New York : Marcel Dekker, 1978 : 385-96.
- 12. Loo YH, Jervis GA, Horning MG. Possible role of 2-phenylethylamine in the pathology of the central nervous system. In : Mosnaïm AD, Wolf ME, eds. Noncatecholic phenylethylamines. Part I. Phenylethylamine : biological mechanisms and clinical aspects. New York : Marcel Dekker, 1978 : 419-45.
- 13. Denno KM, Sadler TW. Phenylalanine and its metabolites induce embryopathies in mouse embryos in cultures. Teratology 1990 ; 42 : 565-70.
- 14. Johnston JP. Some observations upon a new inhibitor of monoamine oxydase in brain tissues. Biochem Pharmacol 1968 ; 17 : 1285-97.
- 15. Lewinsohn R, Glover V, Sandler M. Development of benzylamine oxidase and monoamine oxydase A and B in man. Biochem Pharmacol 1980 ; 29 : 1221-30.
- 16. Cases O, Vitalis T, Seif I, et al. Lack of barrels in the somatosensory cortex of monoamine oxydase A-deficient mice : role of serotonin excess during the critical period. Neuron 1996 ; 16 : 297-307.
- 17. Donnelly E, Murphy DL, Waldman IN, et al. Psychological characteristics corresponding to low versus high platelet monamine oxydase activity. Biol Psychiatr 1979 ; 14 : 375-83.
- 18. Mellick GD, Buchanan DD, Mc Cann SJ, et al. Variations in the monoamine oxydase B (MAOB) gene are associated with Parkinson’s disease. Mov Disord 1999 ; 14 : 219-24.
- 19. Carrasco JL, Diaz-Marsa M, Hollander E, et al. Decreased platelet monoamine oxydase activity in female bulimia nervosa. Eur Neuropsychopharmacol 2000 ; 10 : 113-7.
- 20. Wahlund B, Saaf J, Wetterberg L. Clinical symptoms and platelet monoamine oxydase in subgroups and different states of affective disorders. J Affect Disord 1995 ; 35 : 75-87.
- 21. Verkes RJ, Pijl H, Meinders AE, Van Kempen GM. Borderline personality, impulsiveness and platelet monoamine oxydase in bulimia nervosa and recurrent suicidal behavior. Biol Psychiatr 1996 ; 40 : 173-80.
- 22. Fowler JS. Inhibition of monoamine oxydase B in the brain of smokers. Nature 1996 ; 379 : 733-6.
- 23. Spada M, Vigliano P, Battistoni G, et al. Monoamine oxydase inhibitors in phenylketonuria. J Inher Metab Dis 1998 ; 21 (suppl 2) : 11.
- 24. Shih JC, Chen K, Ridd MJ. Monoamine oxydase : from genes to behavior. Ann Rev Neurosci 1999 ; 22 : 197-217.
- 25. Grimsby J, Toth M, Chen K, et al. Increased stress response and phenylethylamine in MAOB-deficient mice. Nat Genet 1997 ; 17 : 206-10.
- 26. Lenders JW, Eisenhofer G, Abeling NG, et al. Specific deficiencies of the MAOA and B isoenzymes of monoamine oxydase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996 ; 97 : 1010-9.
- 27. Collins FA, Murphy DL, Reiss AL, et al. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine (MAOA and MAOB) genes. Am J Med Genet 1992 ; 42 : 127-34.