Résumés
Résumé
La réabsorption intestinale des acides biliaires joue un rôle prépondérant dans le maintien de l’homéostasie du cholestérol. En effet, la perte fécale des acides biliaires constitue une importante voie d’élimination physiologique du cholestérol. L’I-BABP (ileal bile acid-binding protein) est un polypeptide soluble largement exprimé dans les cellules absorbantes de l’intestin grêle distal, connues pour être le siège d’une réabsorption active extrêmement efficace des acides biliaires. Des résultats récents démontrent que l’expression du gène codant pour l’I-BABP est profondément influencée par les concentrations d’acides biliaires et de cholestérol. Cette régulation requiert l’intervention de facteurs de transcription (FXR, LXR, SREBP) dont on sait qu’ils jouent un rôle homéostatique crucial dans le métabolisme lipidique, en général, et dans celui du cholestérol, en particulier. Ces observations inédites suggèrent que l’expression du gène de l’I-BABP intervient dans le devenir des acides biliaires et du cholestérol à l’échelle de l’organisme.
Summary
In the body, cholesterol balance results from an equilibrium between supplies (diet and cellular de novo synthesis), and losses (cellular use and elimination in feces, essentially as bile acids). Bile acids are synthesized from cholesterol in the liver. After conjugation to glycine or taurine, bile acids are secreted with bile in the intestinal lumen where they actively participate to the digestion and absorption of dietary fat and lipid-soluble vitamins. In healthy subjects, more than 95% of bile acids are reabsorbed throughout the small intestine and returned by the portal vein to the liver, where they are secreted again into bile. This enterohepatic circulation is essential for maintenance of bile acids balance, and hence, for cholesterol homeostasis. Indeed, the bile acids not reclaimed by intestinal absorption constitute the main physiological way to eliminate a cholesterol excess. Little is known about the molecular mechanisms controlling bile acids reabsorption by the small intestine. The intestinal bile acids uptake mainly takes place through an active transport located in the distal part of the small intestine. To date, four unrelated proteins exhibiting a high affinity for bile acids have been identified in the ileum, and only one, the ileal bile acid-binding protein (I-BABP) is a soluble protein. Therefore, it is thought to be essential for efficient bile acids desorption from the apical plasma membrane, as well as for bile acids intracellular trafficking and targeting towards the basolateral membrane. If this assumption is correct, the I-BABP expression level might be rate limiting for the enterohepatic bile acids circulation, and hence, for cholesterol homeostasis. It was found that both bile acids and cholesterol, probably via oxysterols, are able to up-regulate the trancription rate of I-BABP gene. The fact that intracellular sterol sensors (FXR, LXR, and SREBP1c) are involved in the control of the I-BABP gene expression strongly suggests that I-BABP exerts an important role in maintenance of cholesterol balance.
Parties annexes
Références
- 1. Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry 1992; 31: 4737-49.
- 2. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol 2000; 16: 459-81.
- 3. Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64: 635-61.
- 4. Abe T, Kakyo M, Sakagami H, et al. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 1998; 273: 22395-401.
- 5. Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1188-200.
- 6. Schneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH. Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 1995; 95: 745-54.
- 7. Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 1997; 99: 1880-7.
- 8. Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T. Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. Eur J Biochem 1995; 233: 406-13.
- 9. Shneider BL. Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 2001; 32: 407-17.
- 10. Bernlohr DA, Simpson MA, Hertzel AV, Banaszak LJ. Intracellular lipid-binding proteins and their genes. Annu Rev Nutr 1997; 17: 277-303.
- 11. Zimmerman AW, van Moerkerk HT, Veerkamp JH. Ligand specificity and conformational stability of human fatty acid- binding proteins. Int J Biochem Cell Biol 2001; 33: 865-76.
- 12. Lucke C, Zhang F, Hamilton JA, Sacchettini JC, Ruterjans H. Solution structure of ileal lipid binding protein in complex with glycocholate. Eur J Biochem 2000; 267: 2929-38.
- 13. Kramer W, Sauber K, Baringhaus KH, et al. Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and nmr structure. J Biol Chem 2001; 276: 7291-301.
- 14. Kanda T, Niot I, Foucaud L, et al. Effect of bile on the intestinal bile-acid binding protein (I-BABP) expression. In vitro and in vivo studies. FEBS Lett 1996; 384: 131-4.
- 15. Kanda T, Foucaud L, Nakamura Y, et al. Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochem J 1998; 330: 261-5.
- 16. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for nuclear receptor FXR/BAR. Mol cell 1999; 3: 543-53.
- 17. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365-8.
- 18. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362-5.
- 19. Grober J, Zaghini I, Fujii H, et al. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid x receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 1999; 274: 29749-54.
- 20. Zaghini I, Landrier JF, Grober J, et al. Sterol regulatory element-binding protein-1c is responsible for cholesterol regulation of ileal bile acid-binding protein gene in vivo. Possible involvement of liver-X-receptor. J Biol Chem 2002; 277: 1324-31.
- 21. Landrier JF, Grober J, Demydchuk J, Besnard P. FXRE can function as an LXRE in the promoter of human ileal bile acid-binding protein (I-BABP) gene. FEBSLett 2003; 553: 299-303.
- 22. Landrier JF, Grober J, Zaghini I, Besnard P. Regulation of ileal bile acid-binding protein gene: an approach to determine its physiological function(s). Mol Cell Biochem 2002; 239: 149-55.
- 23. Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev 2000; 14: 2819-30.
- 24. Plösch T, Kok T, Bloks VW, et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver-X-receptor (LXR) is independent of ABCA1. J Biol Chem 2002; 277: 33870-7.