Résumés
Résumé
Dans le noyau de la cellule, le nucléole est le centre de synthèse des ribosomes. Domaine nucléaire dynamique, son activité reflète un équilibre entre le niveau de synthèse des ARN ribosomiques (ARNr), directement lié à la croissance et à la prolifération cellulaires, l’efficacité de la maturation des ARNr, et le transport des sous-unités ribosomiques vers le cytoplasme. Le nucléole disparaît avant la division cellulaire et réapparaît juste après, l’assemblage du nucléole étant un événement très précoce en sortie de mitose. La fabrication des ribosomes est interrompue pendant la mitose, mais les machineries nucléolaires sont transmises aux cellules filles. Le nucléole est également un domaine nucléaire multifonctionnel qui joue un rôle important dans l’organisation nucléaire. Des mutations au niveau de gènes codant pour des protéines nucléolaires sont associées à des maladies humaines.
Summary
In eukaryotes, the nucleolus is the ribosome factory. The nucleolus is a very active large nuclear domain resulting from the equilibrium between level of ribosomal gene transcription, efficiency of rRNA processing and transport of the ribosomal subunits (40S and 60S) towards the cytoplasm. The ribosome production is regulated and is linked with cell growth and cell proliferation. The ribosome production is stopped during mitosis but the nucleolar machineries are inherited in daughter cells and the nucleolar reassembly is a very early event at the exit of mitosis. The nucleolus is also a multifunctional domain involved in nuclear architecture and specific interaction with some nuclear bodies. Finally, several human diseases appear to result from mutations of nucleolar proteins.
Parties annexes
Références
- 1. Hadjiolov AA. The nucleolus and ribosome biogenesis. Wien-New York: Springer-Verlag, 1985: 268 p.
- 2. Shaw PJ, Jordan EG. The nucleolus. Annu Rev Cell Dev Biol 1995; 11: 93-121.
- 3. Scheer U, Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol 1999; 11: 385-90.
- 4. Comai L. The nucleolus: a paradigm for cell proliferation and aging. Braz JMed Biol Res 1999; 32: 1473-8.
- 5. Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998; 26: 3871-6.
- 6. Visintin R, Amon A. The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 2000; 12: 372-7.
- 7. Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol 2002; 12: 1-11.
- 8. Leung AK, Lamond AI. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol 2002; 157: 615-29.
- 9. Fox AH, Lam YW, Leung AKL, et al. Paraspeckles: a novel nuclear domain. Curr Biol 2002; 12: 13-25.
- 10. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2: 292-301.
- 11. Strouboulis J, Wolffe AP. Functional compartmentalization of the nucleus. J Cell Sci 1996; 109: 1991-2000.
- 12. Mélèse T, Xue Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 1995; 7: 319-24.
- 13. Trumtel S, Léger-Silvestre I, Gleizes PE, Teulières F, Gas N. Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol Biol Cell 2000; 11: 2175-89.
- 14. Conconi A, Widmer RM, Koller T, Sogo JM. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 1989; 57: 753-61.
- 15. Dammann R, Lucchini R, Koller T, Sogo JM. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21: 2331-8.
- 16. Shou W, Sakamoto KM, Keener J, et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol Cell 2001; 8: 45-55.
- 17. Dammann R, Lucchini R, Koller T, Sogo JM. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol 1995; 15: 5294-303.
- 18. Junéra HR, Masson C, Géraud G, Suja J, Hernandez-Verdun D. Involvement of in situ conformation of ribosomal genes and selective distribution of UBF in rRNA transcription. Mol Biol Cell 1997; 8: 145-56.
- 19. Gébrane-Younès J, Fomproix N, Hernandez-Verdun D. When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 1997; 110: 2429-40.
- 20. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acids Res Mol Biol 1999; 62: 109-54.
- 21. Iben S, Tschochner H, Bier M, et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 2002; 109: 297-306.
- 22. Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999; 33: 261-311.
- 23. Filipowicz W, Pogacic V. Biogenesis of small nucleolar robonucleoproteins. Curr Opin Cell Biol 2002; 14: 319-27.
- 24. Mitchell P, Petfalski E, Tollervey D. The 3’ end of the yeast 5.8 rRNA is generated by an exonuclease processing mechanism. Genes Dev 1996; 10: 502-13.
- 25. Tanner K, Linder P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 2001; 8: 251-62.
- 26. Savino TM, Gébrane-Younès J, De Mey J, Sibarita JB, Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 2001; 153: 1097-110.
- 27. Harnpicharnchai P, Jakovljevic J, Horsey E, et al. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell 2001; 8: 505-15.
- 28. Allmang C, Tollervey D. The role of the 3’ external transcribed spacer in yeast pre-rRNA processing. J Mol Biol 1998; 278: 67-78.
- 29. Sirri V, Hernandez-Verdun D, Roussel P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J Cell Biol 2002; 156: 969-81.
- 30. Puvion-Dutilleul F, Mazan S, Nicoloso M, Pichard E, Bachellerie JP, Puvion E. Alterations of nucleolar ultrastructure and ribosome biogenesis by actinomycin D. Implications for U3 snRNP function. Eur J Cell Biol 1992; 58: 149-62.
- 31. Puvion-Dutilleul F, Puvion E, Bachellerie JP. Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with 5’ETS leader probe. Chromosoma 1997; 105: 496-505.
- 32. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S. Initiation of nucleolar assembly is independent of RNA polmerase I transcription. Mol Biol Cell 2000; 11: 2705-17.
- 33. Le Panse S, Masson C, Héliot L, Chassery JM, Junéra HR, Hernandez-Verdun D. 3-D organization of single ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J Cell Sci 1999; 112: 2145-54.
- 34. Haaf T, Ward DC. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 1996; 224: 163-73.
- 35. Roussel P, André C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 1996; 133: 235-46.
- 36. Sirri V, Roussel P, Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 1999; 112: 3259-68.
- 37. Sirri V, Roussel P, Hernandez-Verdun D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J Cell Biol 2000; 148: 259-70.
- 38. Verheggen C, Le Panse S, Almouzni G, Hernandez-Verdun D. Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J Cell Biol 1998; 142: 1167-80.
- 39. Verheggen C, Almouzni G, Hernandez-Verdun D. The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during Xenopus laevis development. J Cell Biol 2000; 149: 293-305.
- 40. Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 1999; 18: 1891-9.
- 41. Panov KI, Friedrich JK, Zomerdijk JCBM. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 2001; 21: 2641-9.
- 42. Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by rb gene product. Nature 1995; 374: 177-80.
- 43. David-Pfeuty T, Nouvian-Dooghe Y, Sirri V, Roussel P, Hernandez-Verdun D. Common and reversible regulation of wild-type p53 function and of ribosomal biogenesis by protein kinases in human cells. Oncogene 2001; 20: 5951-63.
- 44. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and cell cycle: effects of nucleolar protein Bop1 on G1/S transition. Mol Cell Biol 2001; 21: 4246-55.
- 45. Marciniak RA, Lombard DB, Johnson FB, Guarente L. Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 1998; 95: 6887-92.
- 46. Sinclair DA, Mills K, Guarente I. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 1997; 277: 1313-6.
- 47. Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. WRN helicase accelarates the transcription of ribosomal RNA as a component of an RNA polymerase I-associated complex. Oncogene 2002; 21: 2447-54.
- 48. Dixon J, Edwards SJ, Anderson I, Brass A, Scambler PJ, Dixon MJ. Identification of the complete coding requence and genomic organization of the treacher Collins syndrome gene. Genome res 1997; 7: 223-34.
- 49. Isaac C, Marsh KL, Paznekas WA, et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11: 3061-71.
- 50. Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic acids Res 2001; 29: 598-603.
- 51. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 2001; 20: 1373-82.
- 52. Längst G, Becker PB, Grummt I. TTF-1 determines the chromatin architecture of the active rDNA promoter. EMBO J 1998; 17: 3135-43.