Résumés
Résumé
Le cholestérol est une molécule aux multiples facettes, remplissant des fonctions essentielles pour l’organisme et impliquée dans diverses maladies. Cependant, son rôle dans le système nerveux central reste obscur. Nos travaux réalisés sur des cultures de neurones hautement purifiés à partir du système nerveux central de rongeurs suggèrent que, durant le développement cérébral, les neurones réduisent leur synthèse de cholestérol et l’importent des astrocytes via des lipoprotéines. Les neurones utilisent ce cholestérol d’origine gliale afin de former de nombreuses synapses fonctionnelles. Ces observations conduisent à de nouvelles hypothèses quant au rôle du cholestérol dans le SNC et à la fonction des astrocytes comme producteurs du cholestérol. Afin de vérifier ces hypothèses, de nouvelles études clarifiant les fonctions du cholestérol dans le cerveau et lors de maladies neurodégénératives seront nécessaires.
Summary
Cholesterol is a multifacetted molecule, which serves as essential membrane component, as cofactor for signaling molecules and as precursor for steroid hormones. Despite intense research on the diverse aspects of cholesterol, the role of cholesterol in the nervous system is still little understood. Our recent studies on primary cultures of highly purified neurons from the rodent central nervous system (CNS) suggest that during development, neurons reduce or even abandon cholesterol synthesis and import cholesterol from astrocytes via lipoproteins. Neurons use the glia-derived cholesterol to form numerous and efficient synapses. This provokes new ideas about the role of astrocytes as cholesterol producers and about the function of cholesterol in the CNS and its involvement in neurodegenerative diseases.
Parties annexes
Références
- 1. Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci 2000; 57: 1577-92.
- 2. Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int Rev Neurobiol 2001; 46: 1-32.
- 3. Mann RK, Beachy PA. Cholesterol modification of proteins. Biochim Biophys Acta 2000; 1529: 188-202.
- 4. Vanier MT. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res 1999; 24: 481-9.
- 5. McNamara DJ. Dietary cholesterol and atherosclerosis. Biochim Biophys Acta 2000; 1529: 310-20.
- 6. Danik M, Champagne D, Petit-Turcotte C, Beffert U, Poirier J. Brain lipoprotein metabolism and its relation to neurodegenerative disease. Crit Rev Neurobiol 1999; 13: 357-407.
- 7. Fagan AM, Holtzman DM. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech 2000; 50: 297-304.
- 8. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol 2001; 12: 105-12.
- 9. Mauch DH, Nägler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001; 294: 1354-7.
- 10. Göritz C, Mauch DH, Nägler K, Pfrieger FW. Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair. J Physiol (Paris) 2002; 96: 257-63
- 11. Pfrieger FW. Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 2003; 25: 72-8.
- 12. Pfrieger FW. Role of cholesterol in synapse formation and function. Biochim Biophys Acta 2003; 1610 : 271-80.
- 13. Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells. Science 1997; 277: 1684-7.
- 14. Nägler K, Mauch DH, Pfrieger FW. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 2001; 533: 665-79.
- 15. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 2001; 291: 657-61.
- 16. Jacobson M. Developmental neurobiology. New York: Plenum Press, 1991.
- 17. Barres BA, Silverstein BE, Corey DP, Chun LLY. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1988; 1: 791-803.
- 18. Lang T, Bruns D, Wenzel D, et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 2001; 20: 2202-13.
- 19. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1:31-9.
- 20. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim Biophys Acta 1973; 320: 681-6.
- 21. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2:42-9.
- 22. Klopfenstein DR, Tomishige M, Stuurman N, Vale RD. Role of phosphatidylinositol (4,5) bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002; 109: 347-58.
- 23. Becher A, White JH, McIlhinney RA. The gamma-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 2001; 79: 787-95.
- 24. Meier J, Vannier C, Serge A, Triller A, Choquet D. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 2001; 4: 253-60.
- 25. Saito M, Benson EP, Saito M, Rosenberg A. Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J Neurosci Res 1987; 18: 319-25.
- 26. LaDu MJ, Gilligan SM, Lukens JR, et al. Nascent astrocyte particles differ from lipoproteins in CSF. J Neurochem 1998; 70: 2070-81.
- 27. DeMattos RB, Brendza RP, Heuser JE, et al. Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem Int 2001; 39: 415-25.
- 28. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1155-63.
- 29. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741-66.
- 30. Michikawa M, Gong JS, Fan QW, Sawamura N, Yanagisawa K. A novel action of Alzheimer’s amyloid beta-protein (Abeta): oligomeric Abeta promotes lipid release. J Neurosci 2001; 21: 7226-35.