Résumés
Résumé
Le complexe sensitif du trijumeau intègre, dans le tronc cérébral, les informations somesthésiques (mécaniques, thermiques, proprioceptives) en provenance de la sphère orofaciale et des méninges. Au cours des dernières années, l’existence d’une double représentation de la douleur dans le complexe sensitif du trijumeau, au niveau des sous-noyaux caudal et oral, a été établie. L’essentiel du message douloureux est véhiculé par les fibres périphériques de type C qui se terminent dans le sous-noyau caudal. Ce dernier active à son tour les neurones nociceptifs du sous-noyau oral, qui ont des propriétés similaires à celles des neurones de la couche V de la corne dorsale de la moelle épinière. Un tel système constitue un excellent modèle pour étudier in vivo les mécanismes segmentaires d’activation et de modulation des messages nociceptifs. Il a permis de montrer qu’il existe au niveau segmentaire un ajustement permanent de l’amplification du message nociceptif sous la dépendance des récepteurs du glutamate de type NMDA (N-méthyl-D-aspartate). Le complexe sensitif du trijumeau transmet les messages nociceptifs vers un ensemble de régions corticales, l’amygdale ou l’hypothalamus, par l’intermédiaire de relais situés dans le thalamus, la formation réticulée bulbaire, le noyau parabrachial et le noyau du faisceau solitaire. Ces structures participent à l’intégration des différents aspects de la douleur: sensori-discriminatif, moteur, végétatif, émotionnel. Les aires corticales fonctionnent par le biais d’interactions réciproques avec le thalamus et d’une modulation directe des relais pré-thalamiques. Le dérèglement des divers mécanismes de modulation constitue probablement un élément clé de la physiopathologie des douleurs chroniques trigéminales.
Summary
The brainstem trigeminal complex integrates somatosensory inputs from orofacial areas and meninges. Recent studies have shown the existence of a double representation of pain within the brainstem, at the level of both caudalis and oralis subnuclei. Noxious messages are mainly conveyed by C-fibers that activate the subnucleus caudalis neurons. These neurons in turn activate the subnucleus oralis whose neurons share similar features with the deep spinal dorsal horn neurons. In contrast with the nearness of the laminar organization of the dorsal horn, the vertical organization of the trigeminal complex offers an easier access for the study of segmental mechanisms of nociceptive processing. This model allowed us to show the existence of subtle NMDA-related mechanisms of segmental nocious processing. The trigeminal complex conveys nociceptive messages to several brainstem and thalamic relays that activate a number of cortical areas responsible for pain sensations and reactions. Cortical processing is sustained by reciprocal interactions with thalamic areas and also by a direct modulation of their pre-thalamic relays. The dysfunction of these multiple modulatory mechanisms probably plays a key role in the pathophysiology of chronic trigeminal pain.
Parties annexes
Références
- 1. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc 1993; 124: 115-21.
- 2. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001; 413: 203-10.
- 3. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Neurosci 2002; 8: 136-42.
- 4. Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain 2001; 89: 107-10.
- 5. Gerard MW. Afferent impulses of the trigeminal nerve. The intramedullary course of the painful thermal and tactile impulses. Arch Neurol Psychiatr 1923; 9: 306-38.
- 6. Sjöqvist O. Studies on pain conduction in the trigeminal nerve contribution to surgical treatment of facial pain. Acta Psychiatr Scand 1939; 17:1-139.
- 7. Young RF. Effect of trigeminal tractotomy on dental sensation in humans. J Neurosurg 1982; 56: 812-8.
- 8. Graham SH, Sharp FR, Dillon W. Intraoral sensation in patient with brain stem lesions: role of the rostral spinal trigeminal nuclei in pons. Neurology 1988; 38: 1529-33.
- 9. Dallel R, Raboisson P, Woda A, Sessle BJ. Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat. Brain Res 1990; 521: 95-106.
- 10. Dallel R, Duale C, Luccarini P, Molat JL. Stimulus-function, wind-up and modulation by diffuse noxious inhibitory controls of responses of convergent neurons of the spinal trigeminal nucleus oralis. Eur J Neurosci 1999; 11: 31-40.
- 11. Pajot J, Pelissier T, Sierralta F, Raboisson P, Dallel R. Differential effects of trigeminal tractotomy on Aδ- and C-fiber-mediated nociceptive responses. Brain Res 2000; 863: 289-92.
- 12. Raboisson P, Dallel R, Woda A. Responses of neurones in the ventrobasal complex of the thalamus to orofacial noxious stimulation after large trigeminal tractotomy. Exp Brain Res 1989; 77: 569-76.
- 13. Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A. Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones. Pain 1992; 48: 53-60.
- 14. Hu JW, Woda A, Sessle BJ. Effects of pre-emptive local anaesthesia on tooth pulp deafferentation-induced neuroplastic changes in cat trigeminal brainstem neurones. Arch Oral Biol 1999; 44: 287-93.
- 15. Dallel R, Duale C, Molat JL. Morphine administered in the substantia gelatinosa of the spinal trigeminal nucleus caudalis inhibits nociceptive activities in the spinal trigeminal nucleus oralis. J Neurosci 1998; 18: 3529-36.
- 16. Ressot C, Collado V, Molat JL, Dallel R. Strychnine alters response properties of trigeminal nociceptive neurons in the rat. J Neurophysiol 2001; 86: 3069-72.
- 17. Woda A, Molat JL, Luccarini P. Low doses of NMDA antagonists in superficial laminae of medulla oblongata facilitate wind-up of convergent neurons. Neuroscience 2001; 107: 317-27.
- 18. Voisin D, Luccarini P, Chalus M, Dallel R, Besson JM. Substance P receptor activation contributes to the windup of nociceptive neurons of the rat spinal trigeminal nucleus oralis. Society for Neuroscience, 32th annual meeting, Orlando, 2002. Washington DC: Society for Neuroscience, 2002; 28: 452.
- 19. Dallel R, Ricard O, Raboisson P. Organization of parabrachial projections from the spinal trigeminal nucleus oralis: an anterograde tracing study in the rat. J Comp Neurol 2003 (sous presse).
- 20. Voisin D, Guy N, Chalus M, Dallel R, Renaud B. Projections of the spinal trigeminal nucleus oralis to the thalamus: a retrograde tracing study in the rat. Society for Neuroscience, 31th annual meeting, San Diego, 2001. Washington DC: Society for Neuroscience, 2001; 27: 1618.
- 21. Ahissar E, Sosnik R, Haidarliu S. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 2000; 406: 302-6.
- 22. Besson JM, Chaouch A. Peripheral and spinal mechanisms of nociception. Physiol Rev 1987; 67: 67-185.
- 23. Luccarini P, Cadet R, Duale C, Woda A. Effects of lesions in the trigeminal oralis and caudalis subnuclei on different orofacial nociceptive responses in the rat. Brain Res 1998; 24: 79-85.
- 24. Voisin D, Chalus M, Doméjean-Orliaguet S, Dallel R, Woda A. Ascending intranuclear connections relaying nociceptive information from the caudal part to the oral part of the spinal trigeminal nucleus in the rat. In: Pain in Europe III: Advances in pain research and therapy. Nice: European Federation of IASP, 2000 : 192.
- 25. Woda A. Blanc O, Molat JL, Besson JM, Luccarini P. N-methyl-D-aspartate receptors of substantia gelatinosa medite an inhibitory influence on central sensitization of nociceptive trigeminal neurons. Society for Neuroscience, 31th annual meeting, San Diego, 2001. Washington DC: Society for Neuroscience, 2001; 27: 425.
- 26. Villanueva L, Nathan PW. Multiple pain pathways. In: Devor M, Rowbotham MC, Wiesendfeld-Hallin Z, eds. Proceedings of the 9th World Congress on Pain. Seattle: IASP Press, 2000 : 371-86.
- 27. Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 2002; 12: 195-204.
- 28. Ergenzinger ER, Glasier MM, Hahm JO, Pons TP. Cortically induced thalamic plasticity in the primate somatosensory system. Nat Neurosci 1998; 1: 226-9.
- 29. Krupa DJ, Ghazanfar AA, Nicolelis MA. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci USA 1999; 96: 8200-5.
- 30. Desbois C, Le Bars D, Villanueva L. Organization of cortical projections to the medullary subnucleus reticularis dorsalis: a retrograde and anterograde tracing study in the rat. J Comp Neurol 1999; 410: 178-96.
- 31. Bushnell MC, Duncan GH, Dubner R, He LF. Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J Neurophysiol 1984; 52: 170-87.
- 32. Dallel R, Voisin D. Towards a pain treatment based on the identification of the pain-generating mechanisms? Eur Neurol 2001; 45: 126-32.