Résumés
Résumé
Trois à six pour cent des gènes d’un organisme codent pour des récepteurs couplés aux protéines G, ce qui en fait la plus grande famille de protéines membranaires répertoriée à ce jour. L’analyse structurale du fonctionnement d’une classe particulière de récepteurs couplés aux protéines G, ceux de la classe III, qui regroupe notamment les récepteurs métabotropiques des deux principaux neurotransmetteurs (le glutamate et l’acide γ-aminobutyrique ou GABA), a révélé un mécanisme mettant en jeu des dimères de récepteurs. Cette observation n’est pas sans rappeler le mécanisme d’activation d’autres types de récepteurs membranaires tels que, par exemple, les récepteurs à activité tyrosine kinase de l’insuline. Ce mécanisme pourrait également s’appliquer à d’autres récepteurs couplés aux protéines G, et ouvrir de nouvelles voies d’action pharmacologique visant la régulation de ces récepteurs qui sont déjà la cible de près de la moitié des médicaments existants, quels que soient les domaines thérapeutiques considérés.
Summary
G-protein coupled receptors (GPCRs) represent the largest membrane proteins family in animal genomes. Being the receptors for most hormones and neurotransmitters, these proteins play a central role in intercellular communication. GPCRs can be classified into several groups based on the sequence similarity of their common structural feature: the heptahelical domain. The metabotropic receptors for the main neurotransmitters glutamate and γ-aminobutyric acid (GABA) belong to the class III of GPCRs, together with others receptors for Ca2+, for sweet and amino acid taste compounds and for some pheromones, as well as for odorants in fish. Besides their transmembrane heptahelical domain responsible for G-protein activation, most of class III receptors possess a large extracellular domain responsible for ligand recognition. The recent resolution of the structure of this binding domain of one of these receptors, the mGlu1 receptor, together with the recent demonstration that these receptors are dimers, revealed an original mechanism of activation for these GPCRs. Such data open new possibilities to develop drugs aimed at modulating these receptors, and raised a number of interesting questions on the activation mechanism of other GPCRs.
Parties annexes
Références
- 1. Bockaert J, Pin JP. Utiliser un récepteur couplé aux protéines G pour communiquer: un succès évolutif. CR Acad Sci Ser III 1998; 321: 529-51.
- 2. Hall RA, Premont RT, Lefkowitz RJ. Heptahelical receptor signaling: beyond the G protein paradigm. J Cell Biol 1999; 145: 927-32.
- 3. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000; 289: 739-45.
- 4. Josefsson LG. Evidence for kinship between diverse G-protein coupled receptors. Gene 1999; 239: 333-40.
- 5. Bockaert J, Claeysen S, Becamel C, et al. G protein-coupled receptors: dominant players in cell-cell communication. Int Rev Cytol 2002; 212: 63-132.
- 6. Pin J, Galvez T, Prezeau L. Evolution, structure and activation mechanism of family 3/C G-protein couples receptors. Pharmacol Ther 2003 (sous presse).
- 7. Hoon MA, Adler E, Lindemeier J, et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999; 96: 541-51.
- 8. Dulac C. Sensory coding of pheromone signals in mammals. Curr Opin Neurobiol 2000; 10: 511-8.
- 9. Kunishima N, Shimada Y, Tsuji Y, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407: 971-7.
- 10. Tam R, Saier MH Jr. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993; 57: 320-46.
- 11. Tsuchiya D, Kunishima N, Kamiya N, et al. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci USA 2002; 99: 2660-5.
- 12. Bessis AS, Rondard P, Gaven F, et al. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc Natl Acad Sci USA 2002; 99: 11097-102.
- 13. Romano C, Yang WL, O’Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 1996; 271: 28612-6.
- 14. Bowery NG, Hill DR, Hudson AL, et al. Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980; 283: 92-4.
- 15. Kaupmann K, Huggel K, Heid J, et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 1997; 386: 239-46.
- 16. Jones KA, Borowsky B, Tamm JA, et al. GABA B receptors function as a heteromeric assembly of the subunits GABA B R1 and GABA B R2. Nature 1998; 396: 674-9.
- 17. Kaupmann K, Malitschek B, Schuler V, et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 1998; 396: 683-7.
- 18. White JH, Wise A, Main MJ, et al. Heterodimerisation is required for the formation of a functional GABAB receptor. Nature 1998; 396: 679-82.
- 19. Kuner R, Kohr G, Grunewald S, et al. Role of heteromer formation in GABAB receptor function. Science 1999; 283: 74-7.
- 20. Ng GY, Clark J, Coulombe N, et al. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 1999; 274: 7607-10.
- 21. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron 2000; 27: 97-106.
- 22. Galvez T, Duthey B, Kniazeff J, et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J 2001; 20: 2152-9.
- 23. Kniazeff J, Galvez T, Labesse G, et al. No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002; 22: 7352-61.
- 24. Nelson G, Hoon MA, Chandrashekar J, et al. Mammalian sweet taste receptors. Cell 2001; 106: 381-90.
- 25. Li X, Staszewski L, Xu H, et al. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 2002 ; 99 : 4692-6.
- 26. Wilson IA, Jolliffe LK. The structure, organization, activation and plasticity of the erythropoietin receptor. Curr Opin Struct Biol 1999; 9: 696-704.
- 27. He X, Chow D, Martick MM, et al. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 2001; 293: 1657-62.
- 28. Angers S, Salahpour A, Bouvier M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 2002; 42: 409-35.
- 29. Hamm HE. How activated receptors couple to G proteins. Proc Natl Acad Sci USA 2001; 98: 4819-21.
- 30. Lichtarge O, Bourne HR, Cohen FE. Evolutionarily conserved G (alpha beta gamma) binding surfaces support a model of the G protein-receptor complex. Proc Natl Acad Sci USA 1996; 93: 7507-11.