Résumés
Résumé
Pin1 est une peptidyl-prolyl isomérase (PPIase) catalysant l’isomérisation cis/trans de certains liens peptidiques précédant une proline. L’impact d’une telle modification peut représenter un changement structural important et impliquer une modulation des propriétés d’une protéine. Pin1 est impliquée à différents stades du cycle cellulaire et est nécessaire à l’entrée en mitose. Parmi les cibles de Pin1, plusieurs protéines comme p53, Cdc25C, Myt1 et Wee1 sont associées au cycle cellulaire, d’autres comme Rpb1 et Spt5 sont impliquées dans la transcription. Une autre cible de Pin1, la protéine tau, joue un rôle déterminant dans la pathogénie de la maladie d’Alzheimer. Le rôle précis de l’interaction de Pin1 avec ses cibles reste encore méconnu. Cependant, un nouveau mécanisme semble émerger, dans lequel Pin1 jouerait un rôle de modulateur de la déphosphorylation de certaines protéines par des phosphatases trans-spécifiques
Abstract
Peptidyl-prolyl isomerases (PPIases) are chaperone enzymes which alter the peptide bond between a given amino acid and a proline, changing it from the cis to the trans conformation and vice versa. This modification can cause dramatic structural modifications which can affect the properties of targeted proteins. The ubiquitous PPIase Pin1, conserved from yeast to human, has been shown to be necessary for entry into mitosis. The yeast homologue, Ess1, is essential for cell survival. Pin1 possesses a WW domain which specificaly recognizes pSer-Pro and pThr-Pro motifs in which the first amino acid is phosphorylated. Pin1 binds to many proteins implicated in cell cycle regulation (e.g. p53, Myt1, Wee1, and Cdc25C). Pin1 also targets tau, a protein forming part of the neuronal cytoskeleton which is hyperphosphorylated in patients suffering from Alzheimer’s disease (AD). Pin1 could, therefore, be involved in the pathogenesis of AD. Furthermore, Pin1 also binds two proteins involved in transcription: Rpb1, the largest subunit of RNA polymerase II and Spt5, a regulator of the elongation of transcription. Both these proteins possess domains rich in S/T-P motifs which can be targeted by Pin1 when phosphorylated. Recent studies show that Pin1 modulates the dephosphorylation of some proteins by allowing trans-specific phosphatases to recognize their target after isomerization. This unexpected role might allow protein regulation via peptidyl-prolyl isomerase activity.
Parties annexes
Références
- 1. Gething MJ. Guidebook to molecular chaperones and protein-folding catalysts. Oxford : Sambrook and Tooze Publication. Oxford University Press, 1997 : 554 p.
- 2. Ferrari DM, Söling HD. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 1999 ; 339: 1-10.
- 3. Schmid FX. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct 1993; 22 : 123-43.
- 4. Fischer G, Bang H, Mech C. Detection of enzyme catalysis for cis-trans isomerization of peptide bonds using proline containing peptides as substrates. Biochem Biomed Acta 1984 ; 43 : 1101-12.
- 5. Dolinski K, Muir S, Cardenas M, Heitman J. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997 ; 94 : 13093-8.
- 6. Hanes SD, Shank PR, Bostian KA. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 1989 ; 5 : 55-72.
- 7. Rahfeld JU, Rucknagel KP, Schelbert B, et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett 1994 ; 352 : 180-4.
- 8. Hennig L, Christner C, Kipping M, et al. Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 1998; 37 : 5953-60.
- 9. Lu KP, Hanes SD, Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996 ; 380 : 544-7.
- 10. Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999 ; 283 : 1325-8.
- 11. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000 ; 7 : 639-43.
- 12. Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and phosphorylation-dependent proline isomerization : a potential mitotic regulatory mechanism. Science 1997 ; 278 : 1957-60.
- 13. Shen M, Stukenberg PT, Kirschner MW, Lu KP. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev 1998 ; 12 : 706-20.
- 14. Crenshaw DG, Yang J, Means AR, Kornbluth S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. Embo J 1998 ; 17 : 1315-27.
- 15. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999 ; 399 : 784-8.
- 16. Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC. Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1. Neoplasia 2001 ; 3 : 70-9.
- 17. Liu W, Youn HD, Zhou XZ, Lu KP, Liu JO. Binding and regulation of the transcription factor NFAT by the peptidyl prolyl cis-trans isomerase Pin1. FEBS Lett 2001 ; 496 : 105-8.
- 18. Wulf GM, Ryo A, Wulf GG, et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001 ; 20 : 3459-72.
- 19. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 2001 ; 3 : 793-801.
- 20. Liou YC, Ryo A, Huang HK, et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 2002 ; 99 : 1335-40.
- 21. Kamimoto T, Zama T, Aoki R, Muro Y, Hagiwara M. Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 2001 ; 276 : 37520-8.
- 22. He J, Lau AG, Yaffe MB, Hall RA. Phosphorylation and cell cycle-dependent regulation of Na+/H+ exchanger regulatory factor-1 by Cdc2 kinase. J Biol Chem 2001 ; 276 : 41559-65.
- 23. Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci 1999 ; 112 : 2493-500.
- 24. Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 2001 ; 312 : 675-85.
- 25. Stukenberg PT, Kirschner MW. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 2001 ; 7 : 1071-83.
- 26. Patra D, Wang SX, Kumagai A, Dunphy WG. The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators. J Biol Chem 1999 ; 274 : 36839-42.
- 27. Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002 ; 277 : 2381-4.
- 28. Zhou XZ, Kops O, Werner A, et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 2000 ; 6 : 873-83.
- 29. Fujimori F, Takahashi K, Uchida C, Uchida T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem Biophys Res Commun 1999 ; 265 : 658-63.
- 30. Fujimori F, Gunji W, Kikuchi J, et al. Crosstalk of prolyl isomerases, Pin1/Ess1, and cyclophilin A. Biochem Biophys Res Commun 2001 ; 289 : 181-90.
- 31. Iqbal K, Alonso AC, Gong CX, et al. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Tansm 1998 ; 53 (suppl) : 169-80.
- 32. Spillantini MG, Goedert M. Tau protein pathology in neurogenerative diseases. Trends Neurosci 1998 ; 21 : 428-33.
- 33. Bramblett GT, Goedert M, Jakes R, et al. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993 ; 10 : 1089-99.
- 34. Mandelkow E, Song YH, Schweers O, Marx A, Mandelkow EM. On the structure of microtubules, tau, and paired helical filaments. Neurobiol Aging 1995 ; 16 : 347-54.
- 35. Bensaude O, Bellier S, Dubois MF. Le domaine carboxy-terminal (CTD) de l'ARN polymérase II : un pivot du métabolisme des ARN messagers en général et du VIH en particulier. Med Sci 1998 ; 14 : 167-74.
- 36. Morris DP, Phatnani HP, Greenleaf AL. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-end formation. J Biol Chem 1999 ; 274 : 31583-7.
- 37. Winkler KE, Swenson KI, Kornbluth S, Means AR. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 2000 ; 287 : 1644-7.
- 38. Zacchi P, Gostissa M, UchidaT, et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults.Nature 2002; 419: 853-7.
- 39. Zheng H, You H, Zhou XZ, et al.The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response.Nature 2002; 419: 849-53.
- 40. Lu KP, Liou YC, Vincent I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer’s Disease. BioEssays 2003 ; 25 : 174-81.