Résumés
Résumé
Malgré sa simplicité anatomique, le nématode Caenorhabditis elegans (C. elegans) est un organisme multicellulaire complexe. Au travers des études qui ont contribué à une meilleure compréhension de certains aspects de la physiologie du ver, nous présentons dans cette revue les éléments concernant les bases cellulaires et moléculaires des interactions entre C. elegans et son environnement, notamment les capacités sensorielles, l’horloge biologique interne qui gouverne la vitesse de développement du ver, et certains facteurs contrôlant sa longévité. Nous exposons aussi brièvement les résultats très récents qui démontrent l’existence d’une immunité innée chez ce nématode. Finalement, nous soulignons certaines méthodologies récentes qui ouvrent la voie à des études fonctionnelles systématiques chez C. elegans.
Summary
Despite its relative anatomic simplicity, the nematode Caenorhabditis elegans(C. elegans) is a complex multicellular organism. In this review, we describe studies that have contributed to a better understanding of certain aspects of the worm’s physiology. We focus on the cellular and molecular basis of the interaction between C. elegans and its environment, including its sensory capacities, the intrinsic biological clock that governs the speed of its life, and on some of the factors that control its life span. We also outline very recent findings that have demonstrated the existence of an innate immune system in C. elegans. Finally, we highlight a number of novel techniques that are transforming the worm from a largely genetic model system into an attractive organism for functional genomic studies.
Parties annexes
Références
- 1. Riddle DL, Blumenthal T, Meyer BJ, Priess JR. C. elegans II. Woodbury: Cold Spring Harbor Laboratory Press, 1997: 1222 p.
- 2. Morse TM, Ferree TC, Lockery SR. Robust spatial navigation in a robot inspired by C. elegans. Adaptive Behav 1998; 6: 391-408.
- 3. Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 1995; 83: 207-18.
- 4. Troemel ER, Kimmel BE, Bargmann CI. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 1997; 91: 161-9.
- 5. Sagasti A, Hisamoto N, Hyodo J, Tanaka-Hino M, Matsumoto K, Bargmann C. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 2001; 105: 221-32.
- 6. Tanaka-Hino M, Sagasti A, Hisamoto N, et al. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep 2002; 3: 56-62.
- 7. Wes PD, Bargmann C. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 2001; 410: 698-701.
- 8. Golden JW, Riddle DL. The Caenorhabditiselegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 1984; 102: 368-78.
- 9. Simon JM, Sternberg PW. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99: 1598-603.
- 10. Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol 2002; 12: 730-4.
- 11. Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000; 26: 619-31.
- 12. Peckol EL, Troemel ER, Bargmann CI. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 2001; 98: 11032-8.
- 13. Raizen DM, Avery L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 1994; 12: 483-95.
- 14. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 2000; 26: 583-94.
- 15. Ewbank JJ. Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes Infect 2002; 4: 247-56.
- 16. Mallo GV, Kurz CL, Couillault C, et al. Inducible antibacterial defense system in C. elegans. Curr Biol 2002; 12: 1209-14.
- 17. Dal Santo P, Logan MA, Chisholm AD, Jorgensen EM. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 1999; 98: 757-67.
- 18. Kippert F, Saunders DS, Blaxter ML. Caenorhabditis elegans has a circadian clock. Curr Biol 2002; 12: R47-9.
- 19. Saigusa T, Ishizaki S, Watabiki S, et al. Circadian behavioural rhythm in Caenorhabditis elegans. Curr Biol 2002; 12: R46-7.
- 20. Burr AH. The photomovement of Caenorhabditis elegans, a nematode which lacks ocelli. Proof that the response is to light not radiant heating. Photochem Photobiol 1985; 41: 577-82.
- 21. Hekimi S. Une horloge cellulaire et physiologique règle la vie du nématode Caenorhabditis elegans. Med Sci 1997; 13: 474-82.
- 22. Dillin A, Hsu AL, Arantes-Oliveira N, et al. Rates of behavior and aging specified by mitochondrial function during development. Science 2002; 298: 2398-401.
- 23. Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 1997; 275: 980-3.
- 24. Stenmark P, Grunler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 2001; 276: 33297-300.
- 25. Hihi AK, Gao Y, Hekimi S. Ubiquinone is necessary for Caenorhabditis elegans development at mitochondrial and non-mitochondrial sites. J Biol Chem 2002; 277: 2202-6.
- 26. Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K. Quinones in long-lived clk-1 mutants of Caenorhabditis elegans. FEBS Lett 2002; 512: 33-7.
- 27. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001; 1: 633-44.
- 28. Lakowski B, Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 1996; 272: 1010-3.
- 29. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 2002; 295: 502-5.
- 30. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227-30.
- 31. Benard C, McCright B, Zhang Y, Felkai S, Lakowski B, Hekimi S. The C. elegans maternal-effect gene clk-2 is essential for embryonic development, encodes a protein homologous to yeast Tel2p and affects telomere length. Development 2001; 128: 4045-55.
- 32. Benard C, Hekimi S. Long-lived mutants, the rate of aging, telomeres and the germline in Caenorhabditis elegans. Mech Ageing Dev 2002; 123: 869-80.
- 33. Partridge L, Gems D. Mechanisms of ageing: public or private? Nat Rev Genet 2002; 3: 165-75.
- 34. Lithgow GJ, Walker GA. Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev 2002; 123: 765-71.
- 35. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003; 33: 40-8.
- 36. Jansson HB. Adhesion of conidia of Drechmeria coniospora to Caenorhabditis elegans wild type and mutants. J Nematol 1994; 26: 430-5.
- 37. Hodgkin J, Kuwabara PE, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 2000; 10: 1615-8.
- 38. Couillault C, Ewbank JJ. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 2002; 70: 4705-7.
- 39. Tan MW, Ausubel FM. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 2000; 3: 29-34.
- 40. Kurz CL, Ewbank JJ. Caenorhabditis elegans for the study of host-pathogen interactions. Trends Microbiol 2000; 8: 142-4.
- 41. Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 2001; 183: 6207-14.
- 42. Pujol N, Link EM, Liu LX, et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 2001; 11: 809-21.
- 43. Imler JL, Hoffmann JA. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 2000; 3: 16-22.
- 44. Franc NC, White K. Innate recognition systems in insect immunity and development: new approaches in Drosophila. Microbes Infect 2000; 2: 243-50.
- 45. Linehan SA, Martinez-Pomares L, Gordon S. Macrophage lectins in host defence. Microbes Infect 2000; 2: 279-88.
- 46. Tan MW. Genetic and genomic dissection of host-pathogen interactions using a P. aeruginosa-C. elegans pathogenesis model. Pediatr Pulmonol 2001; 32: 96-7.
- 47. Kim DH, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297: 623-6.
- 48. Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001; 98: 2735-9.
- 49. Aballay A, Drenkard E, Hilbun LR, Ausubel FM. Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol 2003; 13: 47-52.
- 50. Kurz CL, Ewbank JJ, Caenorhabditis elegans: an emerging model for the study of innate immunity. Nat Rev Genet 2003; 4: 380-90.
- 51. Genome sequence of the nematode C. elegans: a platform for investigating biology. The C. elegans Sequencing Consortium. Science 1998; 282: 2012-8.
- 52. Kim SK, Lund J, Kiraly M, et al. A gene expression map for Caenorhabditis elegans.Science 2001; 293: 2087-92.
- 53. Reboul J, Vaglio P, Tzellas N, et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat Genet 2001; 2: 332-6.
- 54. Reboul J, Vaglio P, Rual JF, et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 2003; 34: 35-41.
- 55. Pujol N, Ewbank JJ. C. elegans, du génome à l’invalidation systématique par interférence par ARN. Med Sci 2001; 17: 355-7.
- 56. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421: 231-7.
- 57. Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 2001; 413: 70-4.
- 58. Furlong EE, Profitt D, Scott MP. Automated sorting of live transgenic embryos. Nat Biotechnol 2001; 19: 153-6.
- 59. Avery L, Thomas JH. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C. elegans II. Woodbury: Cold Spring Harbor Laboratory Press, 1997: 679-716.
- 60. Kurz CL, Pujol N. C. elegans: des montagnes de données. Med Sci 2002; 18: 97-9.