Résumés
Résumé
Durant ces 20 dernières années, les microbiologistes ont pris conscience que le mode de croissance bactérien utilisé en laboratoire avait ses limites. En effet, dans leur environnement naturel, les micro-organismes sont attachés à une surface, organisés en communautés structurées, et englobés dans une matrice d’exopolysaccharide. Ce mode de développement, appelé biofilm, a pris une importance toute particulière lorsqu’il a été établi qu’il était impliqué dans un grand nombre d’infections bactériennes. Pseudomonas aeruginosa est un pathogène opportuniste responsable d’infections nosocomiales et d’infections irréversibles et mortelles chez les malades souffrant de mucoviscidose. Cet organisme s’installe dans les tissus sous forme de biofilm, mais est également capable d’adhérer à des surfaces inertes. Le développement de cribles génétiques et le séquençage du génome de P. aeruginosa ont permis d’obtenir de nombreuses informations permettant de mieux comprendre ce phénomène au niveau moléculaire.
Summary
Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated biofilm. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.
Parties annexes
Références
- 1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms : a common cause of persistent infections. Science 1999 ; 284 : 1318-22.
- 2. Chicurel M. Bacterial biofilms and infections. Slimebusters. Nature 2000 ; 408 : 284-6.
- 3. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998 ; 30 : 295-304.
- 4. Rahme LG, Ausubel FM, Cao H, et al. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 2000 ; 97 : 8815-21.
- 5. Filloux A, Michel G, Bally M. GSP-dependent protein secretion in Gram-negative bacteria : the Xcp system of Pseudomonas aeruginosa. Microbiol Rev 1998 ; 22 : 177-98.
- 6. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2000 ; 44 : 640-6.
- 7. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001 ; 3 : 255-64.
- 8. Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa : identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 2001 ; 98 : 6911-6.
- 9. Wall D, Kaiser D. Type IV pili and cell motility. Mol Microbiol 1999 ; 32 : 1-10.
- 10. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation : roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998 ; 30 : 285-93.
- 11. Prigent-Combaret C, Brombacher E, Vidal O, et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia colivia regulation of the csgD gene. J Bacteriol 2001 ; 183 : 7213-23.
- 12. Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 2000 ; 10 : 548-56.
- 13. Whiteley M, Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001 ; 413 : 860-4.
- 14. Parsek MR, Greenberg EP. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria : a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 2000 ; 97 : 8789-93.
- 15. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996 ; 21 : 1137-46.
- 16. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2001 ; 98 : 2752-7.
- 17. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998 ; 280 : 295-8.
- 18. Manefield M, de Nys R, Kumar N, et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999 ; 145 : 283-91.
- 19. Garett ES, Perlegas D, Wozniak, DJ. Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 1999 ; 181 : 7401-4
- 20. Makin SA, Beveridge TJ. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 1996 ; 142 : 299-307.
- 21. O’Toole GA, Gibbs KA, Hager PW, Phibbs PV, Kolter R. The global carbon metabolism regulator Crc is a component of a signal transducion pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 2000 ; 182 : 425-31
- 22. Parkins MD, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001 ; 40 : 1215-26.
- 23. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 1999 ; 178 : 169-75.
- 24. Déziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilitie. J Bacteriol 2001 ; 183 : 1195-204.
- 25. Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001 ; 412 : 442-5.
- 26. Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2000 ; 2 : 59-68.
- 27. Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 1998 ; 64 : 4973-82.
- 28. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 2000 ; 182 : 6482-9.