Résumés
Résumé
Les calpaïnes sont des protéases à cystéine de type papaïne identifiées depuis 50 ans. Parce que leur expression est cytosolique et parce que leur activité est contrôlée par la concentration de Ca2+, il est maintenant admis qu’elles jouent un rôle essentiel dans la signalisation intracellulaire. Elles participent ainsi au contrôle de l’apoptose, de la prolifération, de l’adhérence à la matrice extracellulaire et de la mobilité cellulaires. Il n’est donc pas étonnant qu’elles soient impliquées dans des phénomènes aussi divers que l’ischémie, l’inflammation, la réparation, ou la progression tumorale. Cette revue décrit le rôle que jouent les calpaïnes dans le développement de la réaction inflammatoire. Elle donne une place particulière à l’hypothèse selon laquelle les calpaïnes continuent d’être actives lorsqu’elles sont libérées dans le micro-environnement du foyer inflammatoire.
Summary
Calpains are cysteine proteases first identified 50 years ago. Because they are present in the cytosol of mammalian cells and because they are activated in response to Ca2+ mobilization, they are thought to be involved mainly in cell signalling pathways. They could participate in cellular responses such as apoptosis, proliferation, extracellular matrix adhesion and motility, that have relevance to pathophysiological issues in ischemia, inflammation, repair and tumor progression. Here we consider calpain functions in inflammatory reaction. We report the recent observation that calpain inhibitors reduce the development of acute and chronic inflammation. This has opened the door for understanding how these enzymes are effective in inflammation. We present data suggesting that calpains are primarily responsible for the activation of nuclear factor-κB, a transcription factor with a pivotal role in inflammation. They are involved in inflammatory cell adhesion and migration, pro-inflammatory mediator release and anti-inflammatory hormone resistance as well. In addition, we emphasize the intriguing possibility that calpains are externalized during inflammatory process and that they play a role in the microenvironment of inflammatory cells. Thus, both intracellular and extracellular calpains would offer novel therapeutic targets in inflammation.
Parties annexes
Références
- 1. Sorimachi H, Suzuki K. The structure of calpain. J Biochem 2001 ; 129 : 653-64.
- 2. Glading A, Lauffenburger DA, Wells A. Cutting to the chase : calpain proteases in cell motility. Trends Cell Biol 2002 ; 12 : 46-54.
- 3. Sato K, Kawashima S. Calpain function in the modulation of signal transduction molecules. Biol Chem 2001 ; 382 : 743-51.
- 4. Arthur JSC, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4 : calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 2000 ; 20 : 4474-81.
- 5. Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH. Disruption of the mouse m-calpain gene reveals an essential role in platelet function. Mol Cell Biol 2001 ; 21 : 2213-20.
- 6. Permutt MA, Bernal-Mizrachi E, Inoue H. Calpain 10 : the first positional cloning of a gene for type 2 diabetes ? J Clin Invest 2000 ; 106 : 819-21.
- 7. Baghdiguian S, Martin M, Richard I, et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkBa/NF-kB pathway in limb-girdle muscular dystrophy type 2A. Nature Med 1999 ; 5 : 503-11.
- 8. Richard I, Roudaut C, Marchand S, et al. Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IκBa/nuclear factor κB pathway perturbation in mice. J Cell Biol 2000 ; 151 : 1583-90.
- 9. Shumway SD, Maki M, Miyamoto S. The PEST domain of IκBa is necessary and sufficient for in vitro degradation by m-calpain. J Biol Chem 1999 ; 274 : 30874-81.
- 10. Chen F, Demers LM, Vallyathan V, Lu Y, Castranova V, Shi X. Impairment of NF-κB activation and modulation of gene expression by calpastatin. Am J Physiol 2000 ; 279 : C709-16.
- 11. McDonald MC, Mota-Filipe H, Paul A, et al. Calpain inhibitor I reduces the activation of nuclear factor-κB and organ injury/dysfunction in hemorragic shock. FASEB J 2001 ; 15 : 171-86.
- 12. Cuzzocrea S, McDonald MC, Mazzon E, et al. Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol 2000 ; 157 : 2065-79.
- 13. Cuzzocrea S, McDonald MC, Mazzon E, et al. Calpain inhibitor I reduces colon injury caused by dinitrobenzene sulphonic acid in the rat. Gut 2001 ; 48 : 478-88.
- 14. Cox EA, Huttenlocher A. Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech 1998 ; 43 : 412-9.
- 15. Pontremoli S, Melloni E, Damiani G, et al. Effects of a monoclonal anti-calpain antibody on responses of stimulated human neutrophils. Evidence for a role for proteolytically modified protein kinase C. J Biol Chem 1988 ; 263 : 1915-9.
- 16. Kavita U, Mizel SB. Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem 1995 ; 270 : 27758-65.
- 17. Bellocq A, Doublier S, Suberville S, et al. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90. J Biol Chem 1999 ; 274 : 36891-6.
- 18. Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998 ; 273 : 30530-6.
- 19. Wang KK. Calpain and caspase : can you tell the difference ? Trends Neurosci 2000 ; 23 : 20-6.
- 20. Liu X, Rainey JJ, Harriman JF, Schnellmann RG. Calpains mediate acute renal cell death : role of autolysis and translocation. Am J Physiol 2001 ; 281 : F728-38.
- 21. Szomor Z, Shimizu K, Yamamoto S, Yasuda T, Ishikawa H, Nakamura T. Externalization of calpain (calcium-dependent neutral cysteine proteinase) in human arthritic cartilage. Clin Exp Rheumatol 1999 ; 17 : 569-74.
- 22. Deshpande RV, Goust JM, Chakrabarti AK, Barbosa E, Hogan EL, Banik NL. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation. J Biol Chem 1995 ; 270 : 2497-505.
- 23. Kunimatsu M, Ma XJ, Nishimura J, et al. Neutrophil chemotactic activity of N-terminal peptides from the calpain small subunit. Biochem Biophys Res Commun 1990 ; 169 : 1242-7.
- 24. Abe M, Oda N, Sato Y. Cell-associated activation of latent transforming growth factor-β by calpain. J Cell Physiol 1998 ; 174 : 186-93.
- 25. Loew D, Perrault C, Morales M, et al. Proteolysis of the exodomain of recombinant protease-activated receptors : prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry 2000 ; 39 : 10812-22.
- 26. Mimory T, Suganuma K, Tanami Y, et al. Autoantibodies to calpastatin (an endogenous inhibitor for calcium-dependent neutral protease, calpain) in systemic rheumatic diseases. Proc Natl Acad Sci USA 1995 ; 92 : 7267-71.
- 27. Vanderklish PW, Bahr BA. The pathogenic activation of calpain : a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 2000 ; 81 : 323-39.