Résumés
Résumé
Depuis quelques années, plusieurs études ont montré que certains virus peuvent détruire des cellules cancéreuses, tout en épargnant les cellules normales. Un des exemples récents de virus « oncolytique » est celui du réovirus de mammifères dont la réplication dans les cellules infectées est normalement bloquée par l’activation de la protéine kinase cellulaire PKR. En revanche, la transformation cellulaire par activation du proto-oncogène Ras inhibe la PKR, ce qui permet la réplication virale et entraîne la destruction des cellules infectées. Les études réalisées in vivo dans différents modèles murins de tumorigenèse ont révélé que l’infection locale par les réovirus entraîne la régression des tumeurs. De tels virus oncolytiques pourraient donc représenter une voie thérapeutique de certains cancers.
Summary
Different viruses possess « tropism » that allow them to infect one or few specific cell types. In the last few years, the idea that some viruses could destroy cancer cells, while sparing normal cells, has been proposed. In parallel with the development of genetically engineered viruses, naturally oncolytic viruses are also considered in cancer therapy. Some viruses, such as mammalian reovirus, are interfered in their replication by the cellular protein kinase PKR. However, cell transformation by an activated Ras protooncogene can inhibit PKR. Mammalian reoviruses infect humans without an associated disease (« orphan » virus), suggesting a possible therapeutic application. It has, in fact, been shown that tumor regression through reovirus infection could be achieved in murine models. Studies are under progress to apply similar procedures in humans, since numerous human cancers harbor an activated Ras.
Parties annexes
Références
- 1. Ring CJ. Cytolytic viruses as potential anti-cancer agents. J Gen Virol 2002; 83: 491-502.
- 2. Norman KL, Farassati F, Lee PW. Oncolytic viruses and cancer therapy. Cytokine Growth Factor Rev 2001; 12: 271-82.
- 3. Virgin HW, Tyler KL, Dermody TS. Reovirus. In: Nathanson N, ed. Viral pathogenesis. Philadelphia: Lippincott-Raven, 1996 : 669-99.
- 4. Nibert ML, Schiff LA. Reoviruses and their replication. In : Knipe DM, Howley PM, eds. Fundamental virology, 4th ed. Philadelphia: Lippincott-Raven Publishers, 2001 : 793-842.
- 5. Rosen L, Evans HE, Spickard A. Reovirus infections in human volunteers. Am J Hyg 1963; 77: 29-37.
- 6. Organ EL, Rubin DH. Pathogenesis of reovirus gastrointestinal and hepatobiliary disease. Curr Top Microbiol Immunol 1998; 233 : 67-83.
- 7. Bisaillon M, Bernier L, Sénéchal S, Lemay G. A glycosyl hydrolase activity of mammalian reovirus σ1 protein can contribute to viral infection through a mucus layer. J Mol Biol 1999; 286: 759-73.
- 8. Danis C, Lemay G. Protein synthesis in different cell lines infected with orthoreovirus serotype 3: inhibition of host-cell protein synthesis correlates with accelerated viral multiplication and cell killing. Biochem Cell Biol 1993; 71: 81-5.
- 9. Hashiro G, Loh PC, Yau JT. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 1977; 54: 307-15.
- 10. Duncan MR, Stanish SM, Cox DC. Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 1978; 28: 444-9.
- 11. Strong JE, Lee PWK. The v-erbB oncogene enhanced cellular susceptibility to reovirus infection. J Virol 1996; 70: 612-6.
- 12. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17: 3351-62.
- 13. Kaufman RJ. The double-stranded RNA-activated protein kinase PKR. In : Sonenberg N, Hershey JWB, Mathews MB, eds. Translation control of gene expression. New York: Cold Spring Harbor Laboratory Press, 2000 : 503-27.
- 14. Samuel CE. Reoviruses and the interferon system. Curr Top Microbiol Immunol 1998; 233 : 125-45.
- 15. Schiff LA. Reovirus capsid proteins σ3 and μ1: interactions that influence viral entry, assembly, and translational control. Curr Top Microbiol Immunol 1998; 233: 167-83.
- 16. Gale M, Katze MG. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 1998; 78: 29-46.
- 17. Mundschau LJ, Faller DV. Oncogenic Ras induces an inhibitor of double-stranded RNA-dependent eukaryotic initiation factor 2α-kinase activation. J Biol Chem 1992; 267: 23092-8.
- 18. Mundschau LJ, Faller DV. Endogenous inhibitors of the dsRNA-dependent eIF-2α protein kinase PKR in normal and ras-transformed cells. Biochimie 1994; 76: 792-800.
- 19. Reuter CWM, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational mechanism-based treatment for hematologic malignancies. Blood 2000; 96: 1655-69.
- 20. Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332-4.
- 21. Wilcox ME, Yang WQ, Senger D, et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 2001; 93: 903-12.
- 22. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW. Oncolytic reovirus against ovarian and colon cancer. Cancer Res 2002; 62: 1696-701.
- 23. Norman KL, Coffey MC, Hirasawa K, et al. Reovirus oncolysis of human breast cancer. Hum Gene Ther 2002; 13: 641-52.
- 24. Alain T, Hirasawa K, Pon KJ, et al. Reovirus therapy of lymphoid malignancies. Blood 2002 (PMID 12393565).
- 25. Hirasawa K, Yoon CS, Nishikawa SG, Waisman DM, Lee PWK. Reovirus therapy of metastatic cancer models in immune-competent mice. Annual Meeting of the American Association for Cancer Research 2001. Résumé: http://aacr01.agora.com/planner/displayabstract.aspresentation, id=13225.
- 26. Oberhaus SM, Dermody TS, Tyler KL. Apoptosis and the cytopathic effects of reovirus. Curr Top Microbiol Immunol 1998; 233 : 23-49.