Résumés
Résumé
Notre compréhension des mécanismes de régulation de l’expression génétique chez les eucaryotes supérieurs est en train de s’affiner grâce à la convergence des approches de biologie moléculaire ex vivo et de biologie cellulaire. L’importance des dimensions cinétiques et topologiques commence à poindre. Les interactions de facteurs régulateurs avec leurs gènes cibles nous apparaissent de plus en plus transitoires et dynamiques et, en même temps, la position des gènes dans le volume nucléaire semble de plus en plus influencer et être influencée par l’expression génétique. Nous présentons les méthodes qui ont permis cette évolution, les résultats récents qui accréditent cette vision et nous discutons quelques-uns des modèles qu’une telle vision permet d’élaborer.
Summary
Recently, our understanding of the mechanisms of the regulation of gene expression and our awareness of the importance of the spatial and kinetic dimensions are increasing thanks to the merging information from both cell biology and ex vivo molecular biology approaches. The interactions of regulatory factors with their target genes appear more and more transient and dynamic and the positions of genes in the nuclear volume more and more to influence and be influenced by gene expression. Here, we present the methods that have allowed this evolution, the recent results that support this new conception and discuss some of the models arising from it.
Parties annexes
Références
- 1. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14: 2551-69.
- 2. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000; 14: 121-41.
- 3. Grange T, Bertrand E, Espinas ML, et al.In vivo footprinting of the interaction of proteins with DNA and RNA. Methods 1997; 11: 151-63.
- 4. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 2000; 25: 99-104.
- 5. Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 1999; 97: 299-311.
- 6. Krebs JE, Fry CJ, Samuels ML, Peterson CL. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell 2000; 102: 587-98.
- 7. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103: 667-78.
- 8. Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 2001; 104: 817-27.
- 9. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999; 98: 675-86.
- 10. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103: 843-52.
- 11. Grange T, Cappabianca L, Flavin M, Sassi H, Thomassin H. In vivo analysis of the model tyrosine aminotransferase gene reveals multiple sequential steps in glucocorticoid receptor action. Oncogene 2001; 20: 3028-38.
- 12. Rigaud G, Roux J, Pictet R, Grange T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 1991; 67: 977-86.
- 13. Thomassin H, Flavin M, Espinas ML, Grange T. Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 2001; 20: 1974-83.
- 14. Misteli T. Protein dynamics: implications for nuclear architecture and gene expression. Science 2001; 291: 843-7.
- 15. Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature 2000; 404: 604-9.
- 16. Kimura H, Cook PR. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 2001; 153: 1341-53.
- 17. Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature 2000; 408: 877-81.
- 18. Tumbar T, Sudlow G, Belmont AS. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 1999; 145: 1341-54.
- 19. Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3: 134-9.
- 20. McNally JG, Muller WG, Walker D, Wolford R, Hager GL. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 2000; 287: 1262-5.
- 21. Muller WG, Walker D, Hager GL, McNally JG. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. J Cell Biol 2001; 154: 33-48.
- 22. Stenoien DL, Nye AC, Mancini MG, et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 2001; 21: 4404-12.
- 23. Lewis JD, Tollervey D. Like attracts like: getting RNA processing together in the nucleus. Science 2000; 288: 1385-9.
- 24. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2: 292-301.
- 25. Francastel C, Schubeler D, Martin DI, Groudine M. Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 2000; 1: 137-43.
- 26. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 1999; 145: 1119-31.
- 27. Verschure PJ, van Der Kraan I, Manders EM, van Driel R. Spatial relationship between transcription sites and chromosome territories. J Cell Biol 1999; 147: 13-24.
- 28. Dietzel S, Schiebel K, Little G, et al. The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 1999; 252: 363-75.
- 29. Volpi EV, Chevret E, Jones T, et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 2000; 113: 1565-76.
- 30. Li G, Sudlow G, Belmont AS. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensa-tion and nuclear positioning. J Cell Biol 1998; 140: 975-89.
- 31. Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin. Nature 2000; 407: 471-5.
- 32. Csink AK, Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 1996; 381: 529-31.
- 33. Dernburg AF, Broman KW, Fung JC, et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996; 85: 745-59.
- 34. Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, Groudine M. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 2000; 14: 940-50.
- 35. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91: 845-54.
- 36. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 1999; 3: 207-17.
- 37. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14: 2146-60.
- 38. Skok JA, Brown KE, Azuara V, et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat Immunol 2001; 2: 848-54.
- 39. Lundgren M, Chow CM, Sabbattini P, Georgiou A, Minaee S, Dillon N. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 2000; 103: 733-43.
- 40. Cockell M, Gasser SM. Nuclear compartments and gene regulation. Curr Opin Genet Dev 1999; 9: 199-205.
- 41. Grunstein M. Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 1997; 9: 383-7.
- 42. Laroche T, Martin SG, Gotta M, et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 1998; 8: 653-6.
- 43. Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer- mediated repression. Genes Dev 1996; 10: 1796-811.
- 44. Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 1998; 394: 592-5.
- 45. Marshall WF, Straight A, Marko JF, et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 1997; 7: 930-9.
- 46. Zink D, Cremer T. Cell nucleus: chromosome dynamics in nuclei of living cells. Curr Biol 1998; 8: R321-4.
- 47. Vazquez J, Belmont AS, Sedat JW. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 2001; 11: 1227-39.
- 48. Heun P, Laroche T, Shimada K, Furrer P, Gasser SM. Chromosome dynamics in the yeast interphase nucleus. Science 2001; 294: 2181-6.
- 49. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 1999; 146: 1211-26.
- 50. Manders EM, Kimura H, Cook PR. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 1999; 144: 813-21.
- 51. Marshall WF, Fung JC, Sedat JW. Deconstructing the nucleus: global architecture from local interactions. Curr Opin Genet Dev 1997; 7: 259-63.
- 52. Moir RD, Yoon M, Khuon S, Goldman RD. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 2000; 151: 1155-68.
- 53. Gounon P, Karsenti E. Involvement of contractile proteins in the changes in consistency of oocyte nucleoplasm of the newt Pleurodeles waltlii. J Cell Biol 1981; 88: 410-21.
- 54. Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. Mol Cell 2000; 6: 1025-35.
- 55. Messmer S, Franke A, Paro R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes Dev 1992; 6: 1241-54.
- 56. Alkema MJ, Bronk M, Verhoeven E, et al. Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian polycomb complex. Genes Dev 1997; 11: 226-40.
- 57. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila: gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 1997; 90: 479-90.
- 58. Fauvarque MO, Dura JM. Polyhomeotic regulatory sequences induce developmental regulator- dependent variegation and targeted P-element insertions in Drosophila. Genes Dev 1993; 7: 1508-20.
- 59. Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 2001; 20: 2867-74.
- 60. Cappabianca L, Thomassin H, Pictet R, Grange T. Genomic footprinting using nucleases. Meth Mol Biol 1999; 119: 427-42.
- 61. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 2002; 157: 579-89.