Résumés
Résumé
Dans la cellule eucaryote, le transport intracytoplasmique entre les différents compartiments s’effectue généralement par l’intermédiaire d’organites individualisés, le plus souvent sous forme de vésicules. La formation de ces vésicules, leur transport et la fusion avec un compartiment cible nécessitent l’action de protéines cytosoliques dont l’identité varie en fonction de leurs constituants moléculaires ainsi que des compartiments d’origine et de destination. Certaines de ces protéines participent plus spécifiquement aux différentes étapes de la formation d’une vésicule, le recrutement des protéines transmembranaires, l’assemblage d’un manteau contribuant aux contraintes physiques nécessaires au bourgeonnement et la fission. L’interaction de ces protéines avec la face cytosolique de la bicouche lipidique nécessite un contrôle à la fois spatial et temporel. Ce contrôle est principalement assuré par la modification de certains lipides membranaires qui contrôlent toutes les étapes de la formation d’une vésicule ainsi que sa fusion avec la membrane cible.
Summary
Vesicular traffic is essential for the maintenance of cellular functions as well as inter-cellular communication. Sequential steps of vesicular traffic require the action of cytosolic proteins that are involved in spatial and temporal control of budding, fission, vectorial transport, and fusion with the target compartment. Some of these proteins have been identified as lipid-modifying enzymes that regulate vesicular traffic from, and between the different compartments in the cell. Phosphorylated derivatives of phosphatidylinositol are the most widely used membrane lipids that are acting as specific recruitors and activators of cytosolic proteins among which the members of vesicular coats, proteins that are involved in the regulation of actin dynamics as well as other enzymes involved in lipid metabolism. Here are described, in particular, the roles of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate, two of the most relevant phospho-inositides involved in sequential steps of vesicular budding and fission, from both the Golgi apparatus and the plasma membrane. In addition, this review presents new concepts on the mechanism of action of cytosolic proteins that are binding to, and catalyzing the formation of, acidic membrane lipids. By doing so, these proteins may contribute, through biophysical principles that still remain to be determined and are discussed here, to deform the target membrane, hence promoting membrane budding and fission.
Parties annexes
Références
- 1. Martin TFJ. Phospho-inositide lipids as signal molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1998; 14: 231-64.
- 2. Simonsen A, Wurmser AE, Emr SD, Stenmark H. The role of phospho-inositides in membrane transport. Curr Opin Cell Biol 2001; 13: 485-92.
- 3. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phospho-inositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 1997; 22: 267-72.
- 4. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phospho-inositide 3-kinases: implications for development, homeostatsis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615-75.
- 5. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 1993; 75: 1137-44.
- 6. Schmidt A, Wolde M, Thiele C, et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401: 133-41.
- 7. Hurley JH, Meyer T. Subcellular targeting by membrane lipids. Curr Opin Cell Biol 2001; 13: 146-52.
- 8. Maffucci T, Falasca M. Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phospho-inositide-protein co-operative mechanism. FEBS Lett 2001; 506: 173-9.
- 9. Sato TK, Overduin M, Emr SD. Location, location, location: membrane targeting directed by PX domains. Science 2001; 294: 1881-5.
- 10. Simonsen A, Stenmark H. PX domains: attracted by phospho-inositides. Nat Cell Biol 2001; 3: E179-82.
- 11. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12: 475-82.
- 12. Stack JH, Emr SD. Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem 1994; 269: 31552-62.
- 13. Gaffet P, Jones AT, Clague MJ. Inhibition of calcium-independent mannose 6-phosphate receptor incorporation into trans-Golgi network-derived clathrin-coated vesicles by wortmannin. J BiolChem 1997; 272: 24170-5.
- 14. Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phospho-inositide binding. EMBO J 1999; 18: 871-81.
- 15. Hirst J, Robinson MS. Clathrin and adaptors. Biochem Biophys Acta 1998; 1404: 173-93.
- 16. Ford MG, Pearse BM, Higgins MK, et al. Simultaneous binding of PtdIns (4,5) P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051-5.
- 17. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047-51.
- 18. Gaidarov I, Smith MEK, Domin J, Keen JH. The class II phospho-inositide 3-kinase C2α is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 2001; 7: 443-9.
- 19. Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH. A functional phosphatidylinositol 3,4,5-trisphosphate/phospho-inositide binding domain in the clathrin adaptor AP-2 subunit. Implications for the endocytic pathway. J Biol Chem 1996; 271: 20922-9.
- 20. Gillooly DJ, Simonsen A, Stenmark H. Phospho-inositides and phagocytosis. J Cell Biol 2001; 155: 15-7.
- 21. Marshall JG, Booth JW, Stambolic V, et al. Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 2001; 153: 1369-80.
- 22. Botelho RJ, Teruel M, Dierckman R, et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000; 151: 1353-68.
- 23. Schmid SL, McNiven MA, De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol 1998; 10: 504-12.
- 24. De Camilli P, Emr SD, McPherson PS, Novick P. Phospho-inositides as regulators in membrane traffic. Science 1996; 271: 1533-9.
- 25. Martin TFJ. Phospho-inositides as spatial regulators of membrane traffic. Curr Opin Neurobiol 1997; 7: 331-8.
- 26. Niggli V. Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 2001; 26: 604-11.
- 27. Lorra C, Huttner WB. The mesh hypothesis of Golgi dynamics. Nat Cell Biol 1999; 1: E113-5.
- 28. Tüscher O, Lorra C, Bouma B, et al. Cooperativity of phosphatidylinositol transfer protein and phospholipase D in secretory vesicle formation from the TGN - phospho-inositides as a common denominator? FEBS Lett 1997; 419: 271-5.
- 29. Godi A, Pertile P, Meyers R, et al. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns (4,5) P2 on the Golgi complex. Nat Cell Biol 1999; 1: 280-7.
- 30. Walch-Solimena C, Novick P. The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat Cell Biol 1999; 1: 523-5.
- 31. Huijbregts RPH, Topalof L, Bankaitis VA. Lipid metabolism and regulation of membrane trafficking. Traffic 2000; 1: 195-202.
- 32. Burger KJ. Greasing membrane fusion and fission machineries. Traffic 2000; 1: 605-13.
- 33. Huttner WB, Schmidt A. lipids, lipid modification and lipid-protein interaction in membrane budding and fission- insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol 2000; 10: 543-51.
- 34. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 2001; 155: 193-200.
- 35. Huttner WB, Schmidt A. Membrane curvature: a case of endofeelin’em leader. Trends Cell Biol 2002; 12: 155-8.
- 36. Cremona O, De Camilli P. Phospho-inositides in membrane traffic at the synapse. J Cell Sci 2001; 114: 1041-52.
- 37. Wenk MR, Pellegrini L, Klenchin VA, et al. PIP kinase Ig is the major PI (4,5) P2 synthesizing enzyme at the synapse. Neuron 2001; 32: 79-88.
- 38. Cremona O, Di Paolo G, Wenk MR, et al. Essential role of phospho-inositide metabolism in synaptic vesicle recycling. Cell 1999; 99: 179-88.