Résumés
Résumé
Les travaux précurseurs de microscopie électronique de Roth et Porter démontrent en 1964 le rôle des puits recouverts de clathrine dans l’endocytose sélective des protéines. Si la voie d’endocytose dépendante de la clathrine a longtemps été considérée comme la voie d’internalisation des récepteurs trans-membranaires, les études des deux dernières décennies ont aussi étayé l’existence de voies d’endocytose différentes, dites « indépendantes de la clathrine ». Le manque de techniques et de marqueurs spécifiques a longtemps retardé la caractérisation moléculaire de ces autres voies d’endocytose. Ce sont paradoxalement les derniers progrès réalisés dans la connaissance de l’endocytose dépendante de la clathrine, avec la mise au point d’inhibiteurs moléculaires nouveaux, qui ont permis d’établir sans ambiguïté l’existence de voies indépendantes de la clathrine et de caractériser leur contribution dans les phénomènes d’internalisation. Cet article a pour but de faire le point sur les différentes voies d’endocytose de la cellule et leurs fonctions physiologiques.
Summary
Whether the endocytic uptake of a given molecule is mediated through clathrin-coated vesicles (CCV) or not is a classical criterion used to characterize its endocytic pathway(s). Hence, clathrin-dependent endocytosis has been associated with highly selective and efficient uptake followed by endosomal recycling or degradation, whereas clathrin-independent endocytosis appeared to be confined to bulk-uptake of fluid phase markers.
The formation of clathrin-coated vesicles represents the initial step of the clathrin-dependent pathway. AP-2, clathrin and dynamin are key players in this process : AP-2 is believed to drive clathrin assembly at the plasma membrane and bind to internalization signals found in the cytoplasmic tail of transmembrane receptors ; clathrin gives an organizing framework to the pit ; and the dynamin GTPase activity is required for the detachment of CCVs from the plasma membrane. The last 10 years have seen the identification of novel proteins in endocytosis that either bind to AP-2 or dynamin and are involved in clathrin-coated pit assembly (Eps15, Epsin, AP180) or CCV formation (amphiphysin, endophilin, intersectin).
The characterization of these so-called « accessory proteins » has given the unprecedented opportunity to analyse functionally and mechanistically the less well-understood clathrin-independent pathways, including caveolae and lipid rafts/microdomains-mediated uptake. The recent results obtained with these new tools such as Eps15 dominant negative mutants clearly demonstrate the role of the non-classical endocytic pathways in the internalization of lipids, toxins and trans-membrane proteins such as the interleukin2-receptor. In addition, they suggest that these pathways may be specifically involved in the targeting of internalized materials in specific intracellular compartments such as the trans-Golgi network and the endoplasmic reticulum.
Parties annexes
Références
- 1. Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2001; 17: 517-68.
- 2. Geli MI, Riezman H. Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 1998; 111: 1031-7.
- 3. Kirchhausen T. Clathrin. Annu Rev Biochem 2000; 69: 699-727.
- 4. Kirchhausen T. Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 1999; 15: 705-32.
- 5. Davis CG, Lehrman MA, Russell DW, Anderson RG, Brown MS, Goldstein JL. The JD mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 1986; 45: 15-24.
- 6. Bonifacino JS, Dell’Angelica EC. Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 1999; 145: 923-6.
- 7. Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2001; 2: 727-33.
- 8. Morris SM, Cooper JA. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2001; 2: 111-23.
- 9. Gaidarov I, Keen JH. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol 1999; 146: 755-64.
- 10. Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 2001; 11: 385-91.
- 11. Gaidarov I, Santini F, Warren RA, Keen JH. Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1999; 1 : 1-7.
- 12. Schmid SL, McNiven MA, De Camilli P. Dynamin and its partners: a progress report. Curr Opin Cell Biol 1998; 10: 504-12.
- 13. Sweitzer SM, Hinshaw JE. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 1998; 93: 1021-9.
- 14. McNiven MA, Cao H, Pitts KR, Yoon Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci 2000; 25: 115-20.
- 15. Salcini AE, Confalonieri S, Doria EM, et al. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev 1997; 11: 2239-49.
- 16. Chen H, Fre S, Slepnev VI, et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 1998; 394: 793-7.
- 17. Benmerah A, Bègue B, Dautry-Varsat A, Cerf-Bensussan N. The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps15 protein. J Biol Chem 1996; 271: 12111-6.
- 18. Owen DJ, Vallis Y, Noble ME, et al. A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain. Cell 1999; 97: 805-15.
- 19. Benmerah A, Lamaze C, Bègue B, Schmid SL, Dautry-Varsat A, Cerf-Bensussan N. AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 1998; 140: 1055-62.
- 20. Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsat A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 1999; 112: 1303-11.
- 21. Ford MG, Pearse BM, Higgins MK, et al. Simultaneous binding of PtdIns (4,5) P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051-5.
- 22. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 2001; 291: 1047-51.
- 23. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 1998; 21: 1465-75.
- 24. Schafer DA. Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 2002; 14: 76-81.
- 25. Yamabhai M, Hoffman NG, Hardison NL, et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 1998; 273: 31401-7.
- 26. Roos J, Kelly RB. Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J Biol Chem 1998; 273: 19108-19.
- 27. Hussain NK, Jenna S, Glogauer M, et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 2001; 3: 927-32.
- 28. Lamaze C, Fujimoto LM, Yin HL, Schmid SL. Actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem 1997; 272: 20332-5.
- 29. Takei K, Slepnev VI, Haucke V, De Camilli P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1999; 1 : 33-9.
- 30. Farsad, K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 2001; 155: 193-200.
- 31. Shupliakov O, Low P, Grabs D, et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 1997; 276: 259-63.
- 32. Palade GE. The fine structure of blood capillaries. J Appl Phys 1953; 24: 1424.
- 33. Huet C, Ash JF, Singer SJ. The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts. Cell 1980; 21: 429-38.
- 34. Lamaze C, Schmid SL. The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995; 7: 573-80.
- 35. Damke H, Baba T, van der Bliek AM, Schmid SL. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 1995; 131: 69-80.
- 36. Lamaze C, Dujeancourt A, Baba T, Lo C, Benmerah A, Dautry-Varsat A. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001; 7: 661-71.
- 37. Nichols BJ, Kenworthy AK, Polishchuk R, et al. Rapid cycling of lipid rafts markers between the cell surface and Golgi complex. J Cell Biol 2001; 153: 529-41.
- 38. Honda A, Nogami M, Yokozeki T, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 1999; 5: 521-32.
- 39. Watts C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol 1997; 15: 821-50.
- 40. Marechal V, Prevost MC, Petit C, Perret E, Heard JM, Schwartz O. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol 2001; 75: 11166-77.
- 41. Watarai M, Derre I, Kirby J, Growney JD, Dietrich WF, Isberg RR. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J Exp Med 2001; 194: 1081-96.
- 42. West M, Bretscher M, Watts C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol 1989; 109: 2731-9.
- 43. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68: 673-82.
- 44. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002; 13: 238-50.
- 45. Kurzchalia TV, Parton RG. Membrane microdomains and caveolae. Curr Opin Cell Biol 1999; 11: 424-31.
- 46. Lobie PE, Sadir R, Graichen R, Mertani C. Caveolar internalization of growth hormone. Exp Cell Res 1999; 246: 47-55.
- 47. Le PU, Guay G, Altschuler Y, Nabi IR. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2002; 277: 3371-9.
- 48. Brown DA, London E. Structure and function of sphingolipid and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221-4.
- 49. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev 2000; 1 : 31-9.
- 50. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141: 905-15.
- 51. Falguières T, Baron C, Mallard F, et al. Targeting of Shiga toxin B-subunit to the retrograde transport route in association with detergent resistant membranes. Mol Biol Cell 2001; 12: 2453-68.
- 52. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999; 10: 961-74.
- 53. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA 1999; 96: 6775-80.
- 54. Ceresa BP, Schmid SL. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol 2000; 12: 204-10.
- 55. DiFiore PP, De Camilli P. Endocytosis and signaling: an inseparable partnership. Cell 2001; 106: 1-4.