Résumés
Résumé
Dans la terminaison nerveuse, l’arrivée d’un potentiel d’action induit la libération du neuromédiateur dans l’espace synaptique. Cette libération est la dernière étape d’une série de réactions aboutissant à la fusion de la membrane de la vésicule synaptique à celle de membrane plasmique, réactions impliquant un grand nombre de protéines. Parmi celles-ci, l’ATPase à protons de type vacuolaire (V-ATPase) joue un rôle essentiel à un double niveau, lors du stockage des neuromédiateurs dans les vésicules synaptiques d’abord, lors de l’étape ultime de leur libération ensuite.
Summary
Neurotransmitters are synthesized in the cytoplasm of nerve terminals and stored in synaptic vesicles. Within a msec after stimulation, they are released from synaptic vesicles that are docked to the nerve terminal membrane. Neurotransmitters flow through a fusion pore that forms across the two interacting membranes and then expends, allowing fusion of the synaptic vesicle membrane within the presynaptic membrane. Vacuolar-type proton ATPase (V-ATPase) is essential for neurotransmitter storage. It accumulates protons within synaptic vesicles, generating an electrochemical gradient used by specific transporters to concentrate neurotransmitters. V-ATPase is a complex enzyme made of a catalytic cytoplasmic domain that hydolyses ATP, and a V0 membrane domain which translocates protons. We review data that also implicate the V0 membrane domain in the formation of the fusion pore. Therefore, the same V0 membrane domain of synaptic vesicle V-ATPase could successively translocate protons, when associated to the catalytic domain, and form the fusion pore, when associated in a trans-complex with a presynaptic membrane V0 domain. Functional implications for quantal transmitter release are discussed.
Parties annexes
Références
- 1. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of the active zone material at the frog’s neuromuscular junction. Nature 2001; 409: 479-84.
- 2. Llinas R, Sugimori M, Silver RB. Microdomains of high calcium concentration in a presynaptic terminal. Science 1992; 256: 677-9.
- 3. Llinas R, Steinberg IZ, Walton K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 1981; 33: 323-51.
- 4. Wickner W, Haas A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Rev Biochem 2000; 69: 247-75.
- 5. Nelson N, Harvey WR. Vacuolar and plasma membrane proton-adenosine triphosphatases. Physiol Rev 1999; 79: 361-85.
- 6. Morel N, Gérard V, Shiff G. Vacuolar H+ ATPase domains are transported separately in axons and assemble in Torpedo nerve endings. J Neurochem 1998; 71: 1702-8.
- 7. Yamagata SK, Parsons SM. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase. J Neurochem 1989; 53: 1354-62.
- 8. Michaelson DM, Angel I. Determination of ΔpH in cholinergic synaptic vesicles: its effects on storage and release of acetylcholine. Life Sci 1980 : 27: 39-44.
- 9. Varoqui H, Erickson JD. Vesicular neurotransmitter transporters. Mol Neurobiol 1997; 15: 165-92.
- 10. Ohsawa K, Dowe GHC, Morris SJ, Whittaker VP. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implication for vesicular structure. Brain Res 1979; 161: 447-57.
- 11. Suskiw JB, Zimmermann H, Whittaker VP. Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem 1978; 30: 1269-80.
- 12. Koenig JH, Ikeda K. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release. J Neurophysiol 1999; 81: 1495-505.
- 13. Südhof TC. The synaptic vesicle cycle revisited. Neuron 2000; 28: 317-20.
- 14. Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 2000; 28: 221-31.
- 15. Van der Kloot W, Molgo J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 1994; 74: 899-991.
- 16. Mayer A. What drives membrane fusion in eukaryotes? Trends Biochem Sci 2001; 26: 717-23.
- 17. Bruns D, Jahn R. Molecular determinants of exocytosis. Pflug Arch2002; 443: 333-8.
- 18. Lindau M, Almers W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 1995; 7: 509-17.
- 19. Alvarez de Toledo G, Fernandez-Chacon R, Fernandez JM. Release of secretory products during transient vesicle fusion. Nat 1993; 363: 554-8.
- 20. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the «kiss and run» mechanism. Nat Cell Biol 1999; 1 : 40-4.
- 21. Henkel AW, Betz WJ. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J Neurosci 1995; 15: 8246-58.
- 22. Scepek S, Coorssen JR, Lindau M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J 1998; 17: 4340-5.
- 23. Henkel AW, Kang G, Kornhuber J. A common molecular machinery for exocytosis and the “kiss and run” mechanism in chromaffin cells is controlled by phosphorylation. J Cell Sci 2001; 114: 4613-20.
- 24. Zimmerberg J. How can proteolipids be central players in membrane fusion? Trends Cell Biol 2001; 11: 233-35.
- 25. Israël M, Morel N, Lesbats B, Birman S, Manaranche R. Purification of a presynaptic protein that mediates a calcium dependent translocation of acetylcholine. Proc Natl Acad Sci USA 1986; 83: 9226-30.
- 26. Falk-Vairant J, Corrèges P, Eder-Colli L, et al. Quantal acetylcholine release induced by mediatophore transfection. Proc Natl Acad Sci USA 1996; 93: 5203-7.
- 27. Morel N, Dunant Y, Israël M. Neurotransmitter release through the V0 sector of V-ATPase. J Neurochem 2001; 79: 485-8.
- 28. Peters C, Bayer MJ, Bühler S, Andersen JS, Mann M, Mayer A. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 2001; 409: 581-8.
- 29. Leng XH, Nishi T, Forgac M. Transmembrane topography of the 100 kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1999; 274: 14655-61.