Résumés
Résumé
La découverte de petites protéines globulaires, capables de se lier à des molécules odorantes, dans la lymphe sensillaire des antennes des insectes et dans le mucus nasal des mammifères, a conduit au concept selon lequel les « protéines liant les odeurs » (odorant binding proteins, OBP) et les protéines chimiosensorielles (chemosensory proteins, CSP) pourraient optimiser la réception des stimulus - molécules hydrophobes - en facilitant leur solubilisation dans l’environnement aqueux qui entoure les neurones sensoriels. L’acquisition d’OBP représenterait une des adaptations moléculaires à la vie terrestre, un phénomène qui, au vu de la divergence des OBP, aurait évolué indépendamment chez les insectes et chez les mammifères. L’étude des propriétés fonctionnelles, des variations individuelles et intra-spécifiques, et des mécanismes réglant l’expression de ces protéines constitue une voie possible pour aider non seulement au développement de nouvelles méthodes pour le contrôle des insectes nuisibles, mais également à la compréhension des bases moléculaires de l’olfaction et de certaines anosmies.
Summary
Small globular proteins, highly abundant in the antennal sensillar lymph and in the mammalian nasal mucus, and capable of binding odorant molecules have been discovered. They have led to the concept that odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) may optimize the reception of hydrophobic stimuli molecules by enhancing their solubilization in the aqueous environment that bath the sensory neurons. The acquisition of OBP may represent one of the molecular adaptations to terrestrial life, a phenomenon that may have occured independently in insects and mammals with respect to the great dissimilarity observed in their OBPs. Studying OBP with regard to the functional properties, the individual and interspecific variations and the regulatory mechanisms of synthesis offer new potentials, not only in the development of novel methods to control insect pests but also to the understanding of the molecular basis of olfaction and specific anosmia.
Parties annexes
Références
- 1. Pelosi P. Odorant-binding proteins. Crit Rev Biochem Mol Biol 1994; 29: 199-228.
- 2. Breer H, Boekhoff I, Krieger J, et al. Molecular mechanisms of olfactory signal transduction. In: Corey DP, Roper SD, eds. Sensory transduction. New York : Rockefeller University Press, 1992: 94-108.
- 3. Sandler BH, Nikonova L, Leal WS, et al. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 2000; 7: 143-51.
- 4. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature 1981; 293: 161-3.
- 5. Vogt RG, Riddiford LM. Pheromone reception: a kinetic equilibrium. In: Payre TL, Birch MC, Kennedy CEJ, eds. Seminar on mechanisms in perception and orientation to insect olfactory signals. Oxford: Clarendon Press, 1986: 201-8.
- 6. Du G, Ng CS, Prestwich GD. Odorant binding by a pheromone binding protein-active site mapping by photoaffinity labeling. Biochemistry 1994; 33:4812-9.
- 7. Plettner E, Lazar J, Prestwich E, et al. Discrimination of pheromone enantiomers by two pheromone binding proteins from the gypsy moth, Lymantria dispar. Biochemistry 2000; 30: 8953-62.
- 8. Picimbon JF, Gadenne C. Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 2002; 32: 839-46
- 9. Vogt RG, Rybczynski R, Lerner MR. Molecular cloning and sequencing of general odorant binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparison with other insect OBPs and their signal peptides. J Neurosci 1991; 11: 2972-84.
- 10. Steinbrecht RA, Laue M, Ziegelberger G. Immunolocalization of pheromone-binding-protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx.Cell Tissue Res 1995; 282: 203-17.
- 11. Vogt RG, Callahan FE, Rogers ME, et al. Odorant binding proteins diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses 1999; 24: 481-95.
- 12. Krieger J, von Nickisch-Roseneck EV, Mameli M. et al. Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 1996; 26: 297-307.
- 13. Danty E, Briand L, Michard-Vanhee C, et al. Cloning and expression of a queen pheromone binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J Neurosci 1999; 1: 7468-75.
- 14. Kim MS, Repp A, Smith DP. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 1998; 150: 711-21.
- 15. McKenna MP, Hekmat-Scafe DS, Gaines P, et al. Putative Drosophila pheromone-binding-proteins expressed in a subregion of the olfactory system. J Biol Chem 1994; 269: 16340-7.
- 16. Ozaki M, Morizaki K, Idei W, et al. A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems A unique member of the pheromone binding protein superfamily. Eur J Biochem 1995; 230: 298-308.
- 17. Picimbon JF, Leal WS. Olfactory soluble proteins of cockroaches. Insect Biochem Mol Biol 1999; 29: 973-8.
- 18. Picimbon JF, Dietrich K, Breer H, et al. Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 2000; 30: 233-41.
- 19. Angeli S, Ceron F, Scaloni A, et al. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 1999; 262: 745-54.
- 20. Picimbon JF, Dietrich K, Angeli S, et al. Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 2000; 44: 120-9.
- 21. Marchese S, Angeli S, Andolfo A, et al. Soluble proteins from chemosensory organs of Eurycantha calcarata (insects, Phasmatodea). Insect Biochem Mol Biol 2000; 30: 1091-8.
- 22. Picimbon JF, Dietrich K, Krieger J, et al. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 2001; 29: 973-8.
- 23. Pelosi P, Baldaccini NE, Pisanelli AM. Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 1982; 201: 245-8.
- 24. Kurahashi T, Menini A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 1997; 385: 725-9.
- 25. Krautwurst D, Yau KW, Reed RR. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 1998; 95: 917-26.
- 26. Picimbon JF. Protéines liant les odeurs (OBP) et protéines chimiosensorielles (CSP): cibles moléculaires de la lutte intégrée. In: Regnault-Roger C, Philogène B, Vincent C, eds. Biopesticides d’origine végétale. Paris : Lavoisier Tec et Doc, 2002: 265-83.
- 27. Steinbrecht RA. Olfactory receptors. In: Eguchi E, Tominaga Y, eds. Atlas of arthropod sensory receptors, dynamic morphology in relation to function. Tokyo, Japon : Springer-Verlag, 1999 : 155-76.