Résumés
Résumé
Des chercheurs discutaient récemment de l’importance de rester à jour au sujet des plus récentes avancées en méthodes quantitatives. À ce titre, de nombreux auteurs ont exposé leur souhait de voir les chercheurs abandonner le populaire coefficient alpha de Cronbach. C’est dans une optique de diffusion et de vulgarisation que ce court article a comme objectif de présenter l’alternative qui semble la plus prometteuse pour mesurer la fidélité d’un test, le coefficient omega de McDonald, qui est basée sur l’analyse factorielle à un facteur commun.
Abstract
Researchers have recently discussed the importance of being up to date about the latest advances in quantitative methods. Many authors have expressed their desire to see researchers abandon the popular Cronbach’s alpha. It is with a perspective of diffusion and popularization that this short article aims to present the most promising alternative to measure the reliability of a test, the McDonald’s omega coefficient, which is based on common factor analysis.
Parties annexes
Bibliographie
- Borsboom, D. (2008). Latent variable theory. Measurement, 6(1-2), 25-53.
- Conseil des ministres du Canada. (2012). PIRLS 2011 : Le contexte au Canada [Rapport]. Repéré à https://cmec.ca/Publications/Lists/Publications/Attachments/294/PIRLS_2011_FR.pdf
- Crocker, L. et Algina, J. (1986). Introduction to classical and modern test theory. New York, NY : CBS College Publishing.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
- Dunn, T. J., Baguley, T. et Brunsden, V. (2013). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399-412.
- Graham J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability what they are and how to use them. Educational and Psychological Measurement, 66(6), 930-944. doi: 10.1177/0013164406288165
- Kelley, K. (2017). MBESS: The MBESS R Package. R package version 4.4.2 [logiciel]. Repéré à https://CRAN.R-project.org/package=MBESS
- Kelley, K. et Pornprasertmanit, S. (2016). Confidence intervals for population reliability coefficients: Evaluation of methods, recommendations, and software for composite measures. Psychological Methods, 21(1), 69-92, doi: 0.1037/a0040086
- Laveault, D. (2012). Soixante ans de bons et mauvais usages du alpha de Cronbach. Mesure et évaluation en éducation, 35(2), 1-7. doi: 10.7202/1024716ar
- Martineau, G. (1982). Exploration des valeurs possibles du coefficient a de Cronbach. Revue des sciences de l’éducation, 8(1), 135-143.
- McDonald, R. P. (1985). Factor analysis and related methods. Mahwah, NJ : Lawrence Erlbaum.
- McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ : Lawrence Erlbaum.
- Miller, M. B. (1995). Coefficient alpha: A basic introduction from the perspectives of classical test theory and structural equation modeling. Structural Equation Modeling, 2(3), 255-273.
- Revelle, W. (2017). psych: Procedures for personality and psychological research [logiciel]. Repéré à https://CRAN.R-project.org/package=psych Version = 1.7.8.
- Revelle, W. et Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145-154.
- Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107-120.
- Tavakol, M. et Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53-55.
- Trizano-Hermosilla, I. et Alvarado, J. M. (2016). Best alternatives to Cronbach’s alpha reliability in realistic conditions: Congeneric and asymmetrical measurements. Frontiers in Psychology,26(7), 769. doi: 10.3389/fpsyg.2016.00769
- Widhiarso, W. et Ravand, H. (2014). Reliability coefficient for multidimensional measures. Review of Psychology, 21(2), 111-121.