Résumés
Abstract
While the text, instrumentation, and performance details of Schafer’s Seventh String Quartet (which include an obligato soprano, colour and costume motifs, and texts based on the writings of a schizophrenic woman) seem to distract from the work’s pitch structure, seemingly disparate motives can instead be considered closely related because they repeat a particular transpositional gesture. This article uses transformational network analysis, a recently developed theoretical approach incorporating elements of mathematical and musical set theory, to illustrate similarities between these pitch motives. A brief introduction to transformational network analysis is included for those not familiar with its terminology.
Résumé
Au premier coup d’oeil, les éléments du texte, de l’instrumentation, et des conditions d’interprétations semblent nier l’importance de la structure des tons du Quatuor à cordes no 8 de Schafer (l’oeuvre fait appel à un soprano obligé, des motifs chromatiques et vestimentaires, et des textes basés sur des textes d’une schizophrène). Par contre, on peut déceler des liens étroits entre des motifs musicaux apparemment disparates, qui se conforment à un même geste transpositionnel. Cet article emploie l’analyse de réseaux transformationnels (transformational network analysis), une approche théorique récente qui combine des éléments empruntés aux mathématiques et à la set theory, pour illustrer les similitudes entre ces motifs musicaux. Une introduction brève à l’analyse de réseaux est aussi incluse pour ceux qui ne sont pas familiers avec la terminologie transformationnelle.
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Selected Bibliography
- Douthett, Jack, and Peter Steinbach. “Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition.” Journal of Music Theory 42, no. 2 (1998): 241–263.
- Hook, Julian. “Cross-Type Transformations and the Path Consistency Condition.” Music Theory Spectrum 29, no. 1 (2007): 1–39.
- Kallmann, Helmut, Gilles Potvin, and Kenneth Winters, eds. 1992. The Encyclopedia of Music in Canada, 2nd ed. Toronto: University of Toronto Press.
- Klumpenhouwer, Henry. “The Inner and Outer Automorphisms of Pitch-Class Inversion and Transposition: Some Implications for Analysis with Klumpenhouwer Networks.” Intégral 12 (1998): 81–93.
- Klumpenhouwer, Henry. “A Generalized Model of Voice-Leading for Atonal Music.” PhD diss., Harvard University, 1991.
- Klumpenhouwer, Henry. “Network Analysis and Webern’s Opus 27/III.” Tijdschrift Voor Muziektheorie 3, no. 1 (1998): 24–37.
- Lambert, Philip. “On Contextual Transformations.” Perspectives of New Music 38, no. 1 (2000): 45–76.
- Lambert, Philip. “Isographies and some Klumpenhouwer Networks They Involve.” Music Theory Spectrum 24, no. 2 (2002): 165–195.
- Lewin, David. Generalized Musical Intervals and Transformations. New Haven: Yale University, 1987.
- Lewin, David. “Klumpenhouwer Networks and Some Isographies That Involve Them.” Music Theory Spectrum 12, no. 1 (1990): 83–120.
- Lewin, David. 1993. Musical Form and Transformation: 4 Analytic Essays. New Haven: Yale University Press, 1993.
- Lewin, David. “Transformational Considerations in Schoenberg’s Opus 23, Number 3.” In Music Theory and Mathematics: Chords, Collections, and Transformations, ed. Jack Douthett, Martha M. Hyde, and Charles J. Smith, 197–221. Rochester: University of Rochester Press, 2008.
- Lewin, David. “Transformational Techniques in Atonal and Other Music Theories.” Perspectives of New Music 21, nos. 1–2 (1982–1983): 312–371.
- Molinari Quartet. 2007. “R. Murray Schafer: String Quartets 1–7.” http://www.quatuormolinari.qc.ca/cdsq7a.html.
- Morris, Robert. “Voice-Leading Spaces.” Music Theory Spectrum 20, no. 2 (1998): 175–208.
- Peck, Robert. “Aspects of Recursion in M-Inclusive Networks.” Intégral 18–19 (2004–2005): 25–70.
- Rahn, John. “Some Remarks on Network Models of Music.” In Musical Transformation and Musical Intuition: Eleven Essays in Honor of David Lewin, ed. Raphael Atlas and Michael Cherlin, 225–235. Roxbury, MA: Ovenbird, 1994.
- Rahn, John. “The Swerve and the Flow: Music’s Relationship to Mathematics.” Perspectives of New Music 42, no. 1 (2004): 130–148.
- Roeder, John. “Voice Leading as Transformation.” In Musical Transformation and Musical Intuition: Essays in Honor of David Lewin, ed. Raphael Atlas and Michael Cherlin, 41–58. Roxbury, MA: Ovenbird, 1994.
- Santa, Matthew. “Analysing Post-Tonal Diatonic Music: A Modulo 7 Perspective.” Music Analysis 19, no. 2 (2000): 167–201.
- Santa, Matthew. “Defining Modular Transformations.” Music Theory Spectrum 21, no. 2 (1999): 200–229.
- Schafer, R. Murray. Seventh String Quartet. Indian River, ON: Arcana Editions, 1999.
- Straus, Joseph N. Introduction to Post-Tonal Theory, 3rd ed. Upper Saddle River, NJ: Pearson/Prentice Hall, 2005.
- Tymoczko, Dmitri. “Scale Networks in Debussy.” Journal of Music Theory 48, no. 1 (2004): 219–294.