Résumés
Résumé
Plusieurs facteurs contribuent à l’instabilité des berges dans les méandres, mais le rôle joué par la dynamique de l’écoulement complexe au sein de ces sites n’est pas clairement élucidé. L’objectif de cette recherche est d’examiner la dynamique de l’écoulement tridimensionnel (3D) d’une boucle de méandre en vue de déterminer les liens entre la structure de l’écoulement moyen et turbulent, la contrainte de cisaillement et l’érosion des berges. Des données de vitesse 3D ont été recueillies dans une boucle de méandre avec un vélocimètre acoustique Doppler (ADV) et un profileur acoustique Doppler conçu pour les rivières peu profondes (PC-ADP). Une comparaison entre ces deux appareils a révélé que le PC-ADP donne de bons estimés de vitesse moyenne dans un écoulement relativement simple (au centre du chenal), mais le problème de moyennage spatial le rend moins efficace dans un plan de mélange où l’écoulement est plus complexe. L’ADV est aussi supérieur au PC-ADP pour les estimés de contrainte de cisaillement et l’étude de la turbulence à petite échelle, mais ce dernier révèle mieux les patrons à grande échelle. Deux cellules d’écoulement secondaire dans le méandre ressortent nettement avec les mesures simultanées du PC-ADP. Les maxima de contrainte de cisaillement mesurée avec l’ADV par la méthode d’énergie turbulente cinétique sont situés à l’entrée du méandre lorsque le niveau est plus bas, et à la sortie du méandre lorsque le niveau augmente. Ces deux zones correspondent à des observations de décrochement de berge au site d’étude.
Abstract
Many factors contribute to bank instability in meanders, but the exact role played by the complex flow dynamics is not very well understood. The objective of this research is to examine the three-dimensional (3D) flow dynamics in a meander loop to determine the links between the mean and turbulent flow structure, and bank erosion. 3D velocity data were collected in a meander loop with an acoustic Doppler velocimeter (ADV) and a pulse-coherent acoustic Doppler profiler (PC-ADP). A comparison between these two devices revealed that the PC-ADP provides accurate estimates of mean velocity in a relatively simple flow (in the centre of the channel), but that it is less efficient in a complex flow field with a mixing zone due to spatial averaging problems. The ADV is also better than the PC-ADP for bed shear stress estimates and for small-scale turbulence studies, but the latter reveals large-scale structures efficiently. Two secondary cells in the meander loop are clearly seen from the simultaneous PC-ADP measurements. The maximum values of bed shear stress measured with the ADV with the turbulent kinetic energy method are located at the meander entrance when flow stage is low, and at the meander exit when flow stage increases. These two zones correspond to observations of bank failure events at the field site.
Parties annexes
Références
- Allen, P.M., Arnold, J. et Jakubowski, E., 1999. Prediction of stream channel erosion potential. Environmental and Engineering Geoscience, 5 : 339-351.
- Biedenharn, D.S., Elliott, C.M. et Watson, C.C., 1997. The WES Stream Investigation and Streambank Stabilization Handbook.
- Biron, P.M., Robson, C., Lapointe, M.F. et Gaskin, S.J., 2004. Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Processes and Landforms, 29 : 1403-1415.
- Blanckaert, K. et Graf, W.H., 2001. Mean flow and turbulence in open-channel bend. Journal of Hydraulic Engineering, 127 : 835-847.
- Buffin-Bélanger, T., Roy, A.G. et Kirkbride, A.D., 2000. On large-scale flow structures in a gravel-bed river. Geomorphology, 32 : 417-435.
- Chang, H., 2002. Fluvial Processes in River Engineering. Krieger Publishing.
- Clifford, N.J. et French, J.R., 1993. Monitoring and modelling turbulent flows : historical and contemporary perspectives, p. 1-34. In N.J. Clifford, J.R. French et J. Hardisty, édit., Turbulence : Perspectives on Flow and Sediment Transport. John Wiley and Sons, New York.
- Daniels, M.D. et Rhoads, B.L., 2004. Influence of large woody debris configuration on three-dimensional flow structure in two low-energy a meander bends at varying stages. Water Resources Research, 40 : W11302, 2004WR003181.
- Darby, S.E., Alabyan, A.M. et Van de Wiel, M.J., 2002. Numerical simulation of bank erosion and channel migration in meandering rivers. Water Resources Research, 38 : doi : 10.1029/2001WR000602.
- Darby, S.E. et Delbono, I., 2002. A model of equilibrium bed topography for meander bends with erodible banks. Earth Surface Processes and Landforms, 27 : 1057-1085.
- Darby, S.E. et Thorne, C.R., 1996. Stability analysis for steep, eroding, cohesive riverbanks. Journal of Hydraulic Engineering, 122 : 443-454.
- De Serres, B., Roy, A.G., Biron, P.M. et Best, J., 1999. Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 26 : 313-335.
- Dietrich, W.E. et Smith, J.D., 1983 Influence of the point bar on flow through curved channels. Water Resources Research, 19 : 1173-1192.
- Dietrich, W.E. et Whiting, P.J., 1989. Boundary shear stress and sediment transport in river meanders of sand and gravel, p. 1-50. In River Meandering, Water Resources Monograph 12, Washington D.C.
- Dinehart, R.L. et Burau, J.R., 2005. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends. Water Resources Research, 41 : W09405, 2005WR004050.
- Drake, T.G., Shreve, R.L., Dietrich, W.E., Whiting, P.J. et Leopold, L.B., 1988. Bedload transport of fine gravel observed by motion-picture photography. Journal of Fluid Mechanics, 192 : 193-217.
- Ferguson, R.I., Parsons, D.R., Lane, S.N. et Hardy, R.J., 2003. Flow in meander bends with recirculation at the inner bank. Water Resources Research, 39 : 1322-1335.
- Frothingham, K.M. et Rhoads, B.L., 2003. Three-dimensional flow structure and channel change in an asymmetrical compound meander loop, Embarras River, Illinois. Earth Surface Processes and Landforms, 28 : 625-644.
- Goring, D.G. et Nikora, V.I., 2002. Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128 : 117-126.
- Heathershaw, A.D., 1979. The turbulent structure of the bottom boundary layer in a tidal current. Geophysical Journal of the Royal Astronomical Society, 58 : 395-430.
- Ikeda, S., Parker, G. et Sawai, K., 1981. Bend theory of river meanders. Journal of Fluid Mechanics, 112 : 363-377.
- Jia, Y. et Wang, S.S.Y., 1999. Numerical model for channel flow and morphological change studies. Journal of Hydraulic Engineering, 125 : 924-933.
- Johannesson, H. et Parker, G., 1989. Linear theory of river meanders, p. 181-213. In S. Ikeda et G. Parker, édit., River Meandering. Water Resources Monograph 12, Washington D.C.
- Kim, S.-C., Friedrichs, C.T., Maa, J.P.-Y. et Wright, L.D., 2000. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 126 : 399-406.
- Knighton, D., 1998. Fluvial Forms and Processes. Oxford University Press, New York.
- Lacy, J.R. et Sherwood, C.R., 2004. Accuracy of a Pulse-Coherent Acoustic Doppler Profiler in a wave-dominated flow. Journal of Atmospheric and Oceanic Technology, 21 : 1448-1461.
- Lane, S.N., Biron, P.M., Bradbrook, K.F., Butler, J.B., Chandler, J.H., Crowell, M.D., McLelland, S.J., Richards, K.S. et Roy, A.G., 1998. Three-dimensional measurement of river channel flow processes using Acoustic Doppler Velocimetry. Earth Surface Processes and Landforms, 23 : 1247-1267.
- Lane, S.N., Bradbrook, K.F., Richards, K.S., Biron, P.M. et Roy, A.G., 1999. Time-averaged flow structure in the central region of a stream confluence : a discussion. Earth Surface Processes and Landforms, 24 : 361-367.
- Lee, J.M., Nahajski, A. et Miller, S., 1997. Riverbank stabilization program. Journal of Water Resources Planning and Management, 123 : 292-294.
- McLelland, S.J. et Nicholas, A.P., 2000. A new method for evaluating errors in high-frequency ADV measurements. Hydrological Processes, 14 : 351-366.
- Mosselman, E., Shishikura, T. et Klaassen, G.J., 2000. Effect of bank stabilization on bend scour in anabranches of braided rivers. Physics and Chemistry of the Earth. Part B. Hydrology Oceans and Atmosphere, 25 : 699-704.
- Nicholas, A.P., 2001. Computational fluid dynamics modelling of boundary roughness in gravel-bed rivers : an investigation of the effects of random variability in bed elevation. Earth Surface Processes and Landforms, 26 : 345-362.
- Piégay, H., Darby, S.E., Mosselman, E. et Surian, N. 2005. A review of techniques available for delimiting the erodible river corridor : a sustainable approach to managing bank erosion. River Research and Applications, 21 : 773-789.
- Rhoads, B.L. et Kenworthy, S.T., 1998. Time-averaged flow structure in the central region of a stream confluence. Earth Surface Processes and Landforms, 23 : 171-191.
- Rhoads, B.L. et Kenworthy, S.T., 1999. Short communication : on secondary circulation, helical motion and Rozovskii-based analysis of time-averaged two-dimensional velocity fields at confluences. Earth Surface Processes and Landforms, 24 : 369-375.
- Rhoads, B.L. et Welford, M.R., 1991. Initiation of river meandering. Progress in Physical Geography, 15 : 127-156.
- Rodriguez, J.F., Bombardelli, F.A., García, M.H., Frothingham, K.M., Rhoads, B.L. et Abad, J.D., 2004. High-resolution numerical simulation of flow through a highly sinuous river reach. Water Resources Management, 18 : 177-199.
- Roy, A.G., Biron, P. et De Serres, B., 1996. On the necessity of applying a rotation to instantaneous velocity measurements in river flows. Earth Surface Processes and Landforms, 21 : 817-827.
- Roy, A.G., Biron, P.M. et Lapointe, M.F., 1997. Implications of low-pass filtering on power spectra and autocorrelation functions of turbulent velocity signals. Mathematical Geology, 29 : 653-668.
- Rüther, N. et Olsen, N.R.B., 2005. Three-dimensional modeling of sediment transport in a narrow 90° channel bend. Journal of Hydraulic Engineering, 131 : 917-920.
- Shields, F.D. Jr. et Rigby, J.R., 2005. River habitat quality from river velocities measured using Acoustic Doppler Current Profiler. Environmental Management, 36 : 565-575.
- Simon, A. et Collison, A.J.C., 2001. Pore-water pressure effects on the detachment of cohesive streambeds : seepage forces and matrix suction. Earth Surface Processes and Landforms, 26 : 1421-1442.
- Song, T. et Chiew, Y.M., 2001. Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). Journal of Engineering Mechanics, 127 : 219-232.
- Soulsby, R.L., 1980. Selecting record length and digitization rate for near-bed turbulence measurements. Journal of Physical Oceanography, 10 : 208-219.
- Soulsby, R.L., 1983. The bottom boundary-layer in shelf seas, p. 189-266. In B. Johns, édit., Physical Oceanography of Coastal and Shelf Areas. Elsevier, Amsterdam.
- Stapleton, K.R. et Huntley, D.A., 1995. Seabed stress determination using the inertial dissipation method and the turbulent kinetic energy method. Earth Surface Processes and Landforms, 20 : 807-815.
- Tilston, M., 2006. Three-dimensional flow structure, turbulence and bank erosion in a 180° meander loop. Mémoire de maîtrise, Université de Montréal, 146 p.
- Whiting, P.J. et Dietrich, W.E., 1991. Convective accelerations and boundary shear stress over a channel bar. Water Resources Research, 27 : 783-796.
- Whiting, P.J. et Dietrich, W.E., 1993. Experimental studies of bed topography and flow patterns in large-amplitude meanders : 1. Observations. Water Resources Research, 29 : 3605-3614.
- Wolf, J., 1999. The estimation of shear stresses from near-bed turbulent velocities for combined wave-current flows. Coastal Engineering, 37 : 529-543.
- Wu, W., Rodi, W. et Wenka, T., 2000. 3D numerical modelling of flow and sediment transport in open channels. Journal of Hydraulic Engineering, 126 : 4-15.