Résumés
Résumé
La variabilité interannuelle des débits moyens annuels (1970-1995) de 70 stations hydrologiques réparties dans les trois grands bassins versants du Québec a été étudiée au moyen d’une analyse en composantes principales et d’un lissage par une moyenne mobile simple. Cinq modes de variabilité ont été ainsi identifiés selon la succession des phases de baisse et de hausse des débits. Les trois premiers modes caractérisent les rivières du bassin du fleuve Saint-Laurent. Le premier mode, qui regroupe le plus grand nombre de stations situées sur les deux rives du fleuve, montre une période de baisse des débits (avant 1980), suivie d’une longue phase de hausse modérée des débits. Ce mode est positivement corrélé à l’oscillation australe. Le second mode, qui regroupe les rivières situées au nord de la rive sud du Saint-Laurent, est caractérisé par des débits qui diminuent entre 1975 et 1985, puis augmentent. Il n’est corrélé à aucun indice climatique. Les stations qui forment le troisième mode sont principalement localisées en rive nord. Ce mode est caractérisé par deux phases de hausse séparées par une phase de baisse des débits. Certaines stations de ce mode sont corrélées aux oscillations arctique, australe et nord atlantique. Les deux derniers modes caractérisent les rivières situées au nord du 55e parallèle, dans les bassins de la Baie d’Ungava et de la Baie d’Hudson. Ces modes montrent une phase de diminution continue depuis la seconde période des années 1970 ou une phase de diminution précédée d’une longue phase normale des débits. Ils sont négativement corrélés à l’oscillation arctique et nord atlantique. Il se dégage de cette étude que la variabilité interannuelle des débits n’est pas synchrone à l’intérieur du bassin du fleuve Saint-Laurent.
Abstract
The temporal variability of the annual average discharges (1970-1995) of 70 hydrological stations distributed among Québec three main watersheds was studied by principal component analysis and smoothing by a simple moving average. Five temporal variability modes were thus identified according to the succession of decreasing and increasing discharge phases. The first three modes characterize rivers of the St. Lawrence watershed. The first mode, which includes the greatest number of stations located on both shores of the river, shows a period of decreasing discharges (before 1980), followed by a long phase of moderately increasing discharges. This mode is positively correlated with the Southern Oscillation. The second mode, which includes rivers located in the northern part of the south shore of the St. Lawrence, is characterized by discharges decreasing between 1975 and 1985 and then increasing. It is not correlated with any climate index. The stations forming the third mode are mainly located on the north shore. This mode is characterized by two increasing phases separated by a decreasing discharge phase. Some stations of this mode are correlated with the Arctic, Southern and North Atlantic Oscillations. The last two modes characterize rivers located north of the 55th parallel, in the Ungava Bay and Hudson Bay watersheds. These modes show a continuously decreasing phase since the second period of the 1970s or a decreasing phase preceded by a long normal discharge phase. They are negatively correlated with the Arctic and North Atlantic Oscillations. This study shows that the interannual discharge variability is not synchronous within the St. Lawrence River watershed.
Parties annexes
Références
- Abawi, Y., Dutta, S., Zhang, X. et McClymont, D., 2005. ENSO-based streamflow forecasting and its application to water allocation and cropping decisions-An Australian experience. IAHS Publication, 295 : 346-354.
- Anctil, F. et Coulibaly, P., 2004. Wavelet analysis of the interannual variability in southern Québec streamflow. Journal of Climate, 17 : 163-173.
- Barlow, M., Nigam, S. et Berbery, E.H., 2001. ENSO, Pacific variability, and US summertime precipitation, drought, and stream flow. Journal of climate, 14 : 2105-2128.
- Biggs, B.J.F., Vladimir, I.N. et Snelder, T.H., 2005. Linking scales of flow variability to lotic ecosystems structure and function. River Research and Applications, 21 : 283-298.
- Brown, R.D. et Goodison, B.E., 1996. Interannual variability in reconstructed Canadian snow cover 1915-1992. Journal of Climate, 9 : 1299-1318.
- Cadet, D. et Garnier, R., 1988. L’oscillation australe et ses relations avec les anomalies climatiques globales. La Météorologie, 21 : 4-18.
- Chen, H.L. et Rao, A.R., 2002. Testing hydrologic time series for stationarity. Journal of Hydrological Engineering, 7 : 129-136.
- Chiew, F.H.S. et McMahon, T.A., 2002. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrological Sciences Journal, 47 : 505-522.
- Coulibaly, P. et Burn, D.H., 2004. Walevet analysis of variability in annual Canadian streamflows. Water Resources Research, 40 : 1-14.
- Coulibaly, P. et Burn, D.H., 2005. Spatial and temporal variability of Canadian seasonal streamflows. Journal of Climate, 18 : 191-210.
- Coulibaly, P., Anctil, F., Ramussen, P. et Bobée, B., 2000. A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrological Processes, 14 : 2755-2777.
- Cullen, H.M. et de Menocal, P.B., 2000. North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology, 20 : 853-863.
- Cullen, H.M., Kaplan, A., Arkin, P.A. et de Menocal, P.B., 2002. Impact of the North Atlantic Oscillation on middle easter climate and streamflow. Climatic Change, 55 : 315-338.
- Déry, S.J. et Wood, E.F., 2004. Teleconnection between the Arctic Oscillation and Hudson Bay river discharge. Geophysical Research Letters, 31, doi : 1029/2004GL020729.
- Déry, S.J. et Wood, E.F., 2005. Decreasing river in northern Canada. Geophysical Research Letters, 32, doi : 10.1029/2005GL022845.
- Déry, S.J., Stieglitz, M., McKenna, E.C. et Wood, E.F., 2005. Characteristics and trends of river discharge into Hudson, James, and Ungava Bays, 1964-2000. Journal of Climate, 18 : 2540-2557.
- Eltahir, E.A.B., 1996. El Niño and the natural variability in the flow of the Nile River. Water Resources Research, 32 : 131-137.
- Enfield, D.B., Mestas-Nunez, A. et Trimble, P.J., 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Reseach Letters, 28 : 2077-2080.
- Environnement Canada, 1996. HYDAT CD-ROM : Données sur les eaux de surface et sur les sédiments jusqu’en 1994.
- Fleming, S.W., Moore, R.D. et Clarke, G.K.C., 2006. Glacier-mediated streamflow teleconnections to the Arctic oscillation. International Journal of Climatology, 26 : 619-636.
- Foley, J.A., Botta, A., Coe, M.T. et Costa, M.H., 2002. El Niño-Southern Oscillation and the climate, ecosystems and drivers of Amazonia. Global Biogeochemical Cycles, 16 : 79-100.
- Garia, N.O. et Mechoso, C.R., 2005. Variability in the discharge of South America rivers and in climate. Hydrological Sciences Journal, 50 : 459-478.
- Hamlet, A.F. et Lettenmaier, D.P., 1999. Columbia river streamflow forecasting based on ENSO and PDO climate signals. Journal of Water Resources Planning and Management, 125 : 333-341.
- Hayes, J.W., 1995. Spatial and temporal variation in the relative density and size of juvenile brown trout in the Kakanui River, North Otago, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29 : 393-408.
- Hudon, C., 1997. Impact of water level fluctuation on St. Lawrence River aquatic vegetation. Canadian Journal of Fisheries and Aquatic Sciences, 54 : 2853-2865.
- Hudon, C., 2004. Shift in wetland plant composition and biomass following low-level episodes in the St. Lawrence River : looking into the future. Canadian Journal of Fisheries and Aquatic Sciences, 61 : 603-617.
- Jury, M.R., 2003. The coherent variability of African river flows : composite climate structure and the Atlantic circulation. Water SA, 29 : 1-10.
- Kahana R., Ziv, B., Dayan, U. et Enzel, Y., 2004. Atmospheric predictors for major floods in the Negez desert, Israel. International Journal of Climatology, 24 : 1137-1147.
- Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20 : 141-151.
- Kiely, G., 1999. Climate change in Ireland from precipitation and streamflow observations. Advances Water Resources, 23 : 141-151.
- Kuhnel, I., McMahon, T.A., Finlayson, B.L. et Haines, A., 1990. Climatic influences on streamflow variability : a comparison between southeastern Australia and southeastern United States of America. Water Resources Research, 26 : 2483-2496.
- Labat, D., Rochail, J. et Guyot, J.L., 2005. Recent advances in wavelet analyses : Part 2-Amazon, Orinoco and Congo discharges time scale variability. Journal of Hydrology, 314 : 289-311.
- Maurer, E.P., Gibbard, S. et Duffy, P.B., 2006. Amplification of streamflow impacts of El Niño by increased atmospheric greenhouse gases. Geophysical Research Letters, 33 : doi : 10.1029/2005GL025100.
- McIntoch, A.R., 2000. Habitat- and size-related variations in exotic trout impacts on native galaxid fishes in New Zealand. Canadian Journal of Fisheries and Aquatic Science, 57 : 2140-2151.
- Ouarda, T.B.M.J., Rasmussen, P.F., Cantin, J.-F., Bobée, B., Laurence, R., Hoang, V.D. et Barabé, G., 1999. Identification d’un réseau hydrométrique pour le suivi des modifications climatiques dans la province de Québec. Revue des Sciences de l’Eau, 12 : 425-448.
- Poveda, G., Jaramillo, A., Gil, M.M., Quiceno, N. et Mantilla, R.I., 2001. Seasonnality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37 : 2169-2178.
- Rimbu, N., Dima, M., Lohmann, G. et Stefan, S., 2004. Impacts of the North Atlantic Oscillation and the El Niño-Southern Oscillation on Danube River flow variability. Geophysical Research Letters, 31 : 1-4.
- Rogers, J.C., 1984. The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Monthly Weather Review, 112 : 1999-2015.
- Rogers, J.C. et Coleman, J.S.M., 2003. Interactions between the Atlantic multidecadal oscillation, El Niño/La Nina, and the PNA in winter Mississippi Valley stream flow. Geophysical Research Letters, 30 : 25-1.
- Ropelewski, C.F. et Halpert, M.S., 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115 : 1606-1626.
- Shabbar, A., Bonsal, B. et Khandekar, M., 1997. Canadian precipitation patterns associated with the Southern Oscillation. Journal of Climate, 10 : 3016-3027.
- Shakman, D., Barry, D.K. et Song, J., 2006. Flood frequency in China’s Poyang Lake region : trends and teleconnections. International Journal of Climatology, 26 : 1255-1266.
- Sheridan, S.C., 2002. The redevelopment of a weather-type classification scheme for North America. International Journal of Climatology, 25 : 51-68.
- Sheridan, S.C., 2003. North America weather-type frequency and teleconnection indices. International Journal of Climatology, 23 : 27-45.
- Shrestha, A. et Kostaschuk, R., 2005. El Niño/Southern Oscillation (ENSO)-related variability in mean-monthly streamflow in Nepal. Journal of Hydrology, 308 : 33-49.
- Siew-yan-yu, T.O., Rousselle, J., Jacques, G. et Nguyen, V.-T.-V., 1998. Régionalisation du régime des précipitations dans la région des Bois-Francs et de l’Estrie par l’analyse en composantes principales. Canadian Journal of Civil Engineers, 25 : 1050-1058.
- Spence, C., 2002. Streamflow variability (1965-1998) in five Northwest Territories and Nunavut rivers. Canadian Water Resources Journal, 27 : 135-154.
- Thompson, D.W.J. et Wallace, J.M., 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25 : 1297-1300.
- Thompson, D.W.J. et Wallace, J.M., 2001. Regional climate impacts of the Northern Hemisphere annular mode. Science, 293 : 85-89.
- Tootle, G.A., Piechota, T.C. et Singh, A., 2005. Coupled oceanic-atmospheric variability and U.S. streamflow. Water Resources Research, 41 : 1-11.
- Trigo, R.M., Pozo-Vasquez, D., Osborn, T., Castro-Diez, Y., Gamiz-Fortis, S. et Esteban-Parra, M.J., 2004. North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24 : 925-944.
- Twine, T.E., Kucharik, C.J. et Foley, J., 2005. Effects of El Niño-Southern Oscillation on the climate, water balance, and streamflow of the Mississippi River basin. Journal of Climate, 18 : 4840-4861.
- Vicente-Serrano, S.M., 2005. El Niño and La Niña influence on droughts at different timescales in the Iberian Peninsula. Water Resources Research, 41 : doi : 10.1029/2004WR003908.
- Wanner , H., 1999. Le balancier de l’Atlantique nord. La Recherche, 321 : 72-73.
- Waylen P. et Poveda, G., 2002. El Niño-Southern Oscillation and aspects of western South American hydro-climatology. Hydrological Processes, 16 : 1247-1260.
- Zhang, X., Harvey, D.K, Hogg, W.D. et Yuzyk, T.R., 2001. Trends in Canadian streamflow. Water Resources Research, 37 : 987-998.