Résumés
Abstract
Iceberg fragments recovered from the sea floor near Swift Glacier, Antarctica, contained sufficient sediment to sink the ice. Sediment concentrations in the samples would have caused them to settle at 0.13 to 0.35 m/s through the water column. Impact with the sea floor would significantly turbate soft sediments. Unlike sediment dumped from icebergs, the stratigraphy of the frozen sediments created by glacial processes may be preserved in the marine sedimentary record after melting of the ice. Negatively buoyant berg fragments may be common in polar regions, and when driven by currents may scour the sea floor up and down slopes unlike floating ice.
Résumé
Des fragments d’icebergs recueillis sur le fond océanique, près du glacier de Swift, en Antarctique, contenaient suffisamment de sédiments pour couler à une vitesse de 0,13 à 0,35 m/s. La collision de tels fragments avec le plancher marin entraînerait un brassage important des sédiments mous. Au contraire de celle de sédiments délestés par les icebergs, la stratigraphie de ces sédiments gelés résultant de processus glaciaires peut être préservée au sein des dépôts marins après la fonte des fragments de glace dans lesquels ils sont emprisonnés. Ces fragments, dont la densité est supérieure à celle de l’eau, pourraient être communs dans les régions polaires et causer, sous l’action des courants, un labourage ascendant et descendant des pentes des fonds marins, contrairement aux glaces flottantes.
Parties annexes
References
- Anderson, J.B., Domack, E.W. and Kurtz, D.D., 1980. Observations of sediment-laiden icebergs in Antarctica waters: implications to glacial erosion and transport. Journal of Glaciology, 25: 387-396.
- Bischof, J., 2000. Ice Drift, Ocean Circulation and Climate Change. Springer-Praxis, Chichester, 215 p.
- Dietrich, W.E., 1982. Settling velocity of natural particles. Water Resources Research, 18: 1615-1626.
- Gilbert, R., 1983. Sedimentary processes of Canadian arctic fjords. Sedimentary Geology, 36: 147-175.
- ——— 1990, Rafting in glacimarine environments, p. 105-120. In J.A. Dowdeswell and J.D. Scource, ed., Glacimarine Environments: Processes and Sediments. The Geological Society Special Publication 53, London, 380 p.
- Goldschmidt, P.M., 1994. Armoured and unarmoured till balls from the Greenland Sea floor. Marine Geology, 121: 121-128.
- Iverson, N.R., 1993. Regelation ice through debris at glacier beds: implications for sediment transport. Geology, 21: 555-562.
- Josenhans, H. and Woodworth-Lynas, C., 1988. Enigmatic linear furrows and pits on the upper continental slope, northwest Labrador Sea: are they sediment furrows or feeding traces. Maritime Sediments, 24: 149-155.
- Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E. and Thiede, J., 1994. Sediments in arctic sea ice: implications for entrainment, transport and release. Marine Geology, 119: 185-214.
- Reimnitz, E. and Bruder, K.F., 1972. River discharge into an ice-covered ocean and related sediment dispersal, Beaufort Sea, Coast of Alaska. Bulletin of the Geological Society of America , 83: 861-866.
- Reimnitz, E., Kempema, E.W., Weber, W.S., Clayton, J.R. and Payne, J.R., 1990. Suspended-matter scavenging by rising frazil ice, p. 97-100. In S.F. Ackley and W.F. Weeks, ed. Sea Ice Properties and Processes. U.S. Army Cold Regions Research and Engineering Laboratory Monograph M90-01, Hanover, 148 p.
- Scambos, T.A., Hulbe, C., Fahnstrock, M. and Bohlander, J., 2001. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 154: 516-530.
- Small, R.J., 1987. Moraine sediment budgets, p. 165-197. In A.M. Gurnell and M.J. Clark, ed., Glacio-fluvial Sediment Transport: An Alpine Perspective. Wiley, Chichester, 486 p.
- Smedsrud, L.H., 2002. Frazil ice entrainment of sediment: large-tank laboratory experiments. Journal of Glaciology, 47: 461-471.
- Vaughan, D.G., Marshall, G.J., Connolley, U.M., King, J.C. and Mulvaney, R., 2001. Devil is in the detail. Science, 293: 1777-1779.