Résumés
Abstract
A plant macrofossil record from the glacial Lake Hind basin is used to reconstruct early postglacial wetland plant succession and paleohydrology. Between >10.6 and 9.1 ka BP, there are four plant assemblage zones: (1) an early (>10.6 ka BP) zone dominated by Cyperaceae and aquatics; (2) a subsequent zone (~10.6-10.1 ka BP) with emergents (Menyanthes trifoliata, Potentilla palustris, Scirpus validus) and fewer aquatic plants; (3) an interval between ~10.1 and 9.8 ka BP dominated by Drepanocladus aduncus; and (4) a zone between ~9.8 and 9.1 ka BP with Menyanthes trifoliata and Equisetum. These data indicate a gradual decline in water depth between 10.6 and 10.1 ka BP due to deepening of one or more outlets of glacial Lake Hind. From ~10.6 to 9.1 ka BP, the importance of Menyanthes records pronounced, seasonal, flooding. Furthermore, lack of evidence for complete drawdown and terrestrialization in the basin – despite local and regional evidence for postglacial warming – indicates that this wetland was minimally impacted by climate change up to at least 9.1 ka BP. Persistence of very wet conditions locally is consistent with recent results from south-central Saskatchewan, and may be due to release of meltwater from stagnant ice. However, frequent low-energy flooding of the basin by the Souris River is more plausible. In general, the apparent insensitivity of aquatic habitats to abrupt climate change in some locales on the Canadian Prairies demonstrates the potential long-term mitigating effects of local hydrological factors.
Résumé
L’analyse de macrofossiles de plantes dans la cuvette du Lac glaciaire Hind a servi à déterminer la paléohydrologie et la succession de plantes d’un milieu humide du début du Postglaciaire. Entre >10,6 et 9,1 ka BP, quatre zones d’assemblages se succèdent : (1) une première zone (>10,6 ka BP) dominée par les Cyperacées et les plantes aquatiques ; (2) une zone subséquente (~10,6-10,1 ka BP) caractérisée par quelques plantes émergentes (Menyanthes trifoliata, Potentilla palustris, Scirpus validus) et certaines plantes aquatiques ; (3) une troisième zone (~10,1-9,8 ka BP) dominée par Drepanocladus aduncus ; et (4) une dernière zone (~9,8-9,1 ka BP) composée de Menyanthes trifoliata et d’Equisetum. Selon les données, la profondeur d’eau de la cuvette du Lac glaciaire Hind a diminué de façon progressive entre 10,6 et 10,1 ka BP à la suite du surcreusement d’un ou de plusieurs de ses exutoires. De 10,6 à 9,1 ka BP, l’importance de Menyanthes témoigne d’importants débordements saisonniers des eaux. De plus, l'absence d’indices d’un assèchement total de la cuvette (malgré le réchauffement postglaciaire local et régional) indique que cette zone humide a résisté au changement climatique, au moins jusqu’à 9,1 ka BP. La persistance de conditions localement très humides concorde avec de récents résultats provenant du centre-sud de la Saskatchewan et pourrait être attribuable à la fonte de glace stagnante. Cependant, l'hypothèse de débordements fréquents mais modérés de la rivière Souris dans la cuvette est plus plausible. En général, l'apparente résistance, dans certains secteurs des Prairies, des habitats aquatiques aux changements climatiques brutaux démontre bien le potentiel à long terme des effets atténuants des facteurs hydrologiques locaux.
Resumen
El registro macrofósil vegetal de la cuenca del Lago glaciar Hind fue usado para reconstruir la sucesión vegetal y la paleohidrología de la zona húmeda. En un periodo situado hace unos 10 600 a 9100 años se distinguen cuatro zonas vegetales : la primera zona (hace mas de 10 600 años) dominada por Cyperaceae y acuáticas ; la segunda datando de aproximadamente unos 10 600 a 10 100 años, representada por plantas emergentes (Menyanthes trifoliata, Potentilla palustris, Scirpus validus) y unas pocas plantas acuáticas ; una tercera situada en el intervalo cubierto entre unos 10 100 y 9800 años, dominada por Drepanocladus aduncus; y la última que abarca el periodo comprendido entre unos 9800 y 9100 años, representada por Menyanthes trifoliata y Equisetum. Estos datos indican una disminución gradual de la profundidad del lago debido a la excavación de uno o varios de los afluentes del lago glaciar Hind y que la sitúa hace aproximadamente 10 600 a 10 100 años. Alrededor del periodo comprendido entre unos 10 600 y 9100 años, los registros obtenidos de Menyanthes reflejan episodios importantes y estacionales de inundaciones. Mas aun, la carencia de evidencia de un descenso del nivel y de la sedimentación de la cuenca – a pesar de la evidencia local y regional de calentamiento postglaciar – indica que esta zona húmeda fue poco perturbada por el cambio climático hasta hace menos de 9100 años. La persistencia de condiciones muy húmedas de la localidad concuerda con los resultados recientes de la zona centro-sur de Saskatchewan, y puede deberse a la liberación del agua de fusión proveniente del hielo estancado. Sin embargo, es mas probable que se trate de las inundaciones frecuentes de baja energía que ocurrieron en la cuenca provocadas por el Souris River. En general, la aparente resistencia de los ambientes acuáticos frente a cambios abruptos del clima en algunas localidades de la Praderas canadienses demuestra el potencial a largo plazo del efecto atenuante de los factores hídricos locales.
Parties annexes
References
- Aitken, A.E., Last, W.M. and Burt, A.K., 1999. The lithostratigraphic record of late Pleistocene-Holocene environmental change at the Andrews site near Moose Jaw, Saskatchewan, p. 173-181. In D. Lemmen and R.E. Vance, eds., Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluating the Impacts of Climate Change on the Southern Canadian Prairies. Geological Survey of Canada, Ottawa, Bulletin 534, 295 p.
- Armstrong, D. and Boatman, D.J., 1967. Some field observations relating the growth of bog plants to conditions of soil aeration. Journal of Ecology, 55: 101-110.
- Barnosky, C.W., 1989. Postglacial vegetation and climate in the northwestern Great Plains of Montana. Quaternary Research, 31: 57-73.
- Barnosky, C.W., Grimm, E.C. and Wright, H.E., Jr., 1987. Towards a postglacial history of the northern Great Plains: A review of the paleoecologic problems. Annals of the Carnegie Museum, 56: 259-273.
- Beaudoin, A.B., 1993. A compendium and evaluation of postglacial pollen records in Alberta. Canadian Journal of Archaeology, 17: 92-112.
- Berggren, G., 1969. Atlas of Seeds and Small Fruits of Northwest-European Plant Species, Part 2: Cyperaceae. Swedish Natural Science Research Council, Stockholm, 68 p.
- Birks, H.H., 1973. Modern macrofossil assemblages in lake sediments in Minnesota, p. 173-189. In H.J.B Birks and R.G. West, eds., Quaternary Plant Ecology. Blackwell Scientific Publications, Oxford, 326 p.
- Boyd, M., 2000. Late Quaternary Geoarchaeology of the Lauder Sandhills, Southwestern Manitoba, Canada. Ph.D. thesis, University of Calgary, 300 p.
- _____ 2002. Identification of anthropogenic burning in the paleoecological record of the northern Prairies: A new approach. Annals of the Association of American Geographers, 92: 471-487.
- Boyd, M., Running IV, G.L. and Havholm, K., 2003. Paleoecology and geochronology of glacial Lake Hind during the Pleistocene-Holocene transition: A context for Folsom surface finds on the Canadian Prairies. Geoarchaeology: An International Journal, 18: 583-607.
- Clayton, L. and Moran, S.R., 1982. Chronology of Late Wisconsin glaciation in middle North America. Quaternary Science Reviews, 1: 55-82.
- Coult, D.A. and Vallance, K.B., 1958. Observations on the gaseous exchanges which take place between Menyanthes trifoliata L. and its environment, part II. Journal of Experimental Botany, 9: 384-402.
- Crum, H., 1976. Mosses of the Great Lakes Forest. Revised Edition. University Herbarium, University of Michigan, Ann Arbor, 471 p.
- Crum, H.A. and Anderson, L.E., 1981. Mosses of Eastern North America. Columbia University Press, New York, 2 vol., 1328 p.
- David, P.P., 1977. Sand Dune Occurrences of Canada: A Theme and Resource Inventory of Eolian Landforms in Canada. Department of Indian and Northern Affairs, National Parks Branch, Ottawa, Report 74-230, 183 p.
- Deal, D.E., 1972. Geology of Rolette County, North Dakota. North Dakota Geological Survey, Grand Forks, Bulletin 58, 89 p.
- Fenton, M.M., Moran, S.R., Teller, J.T. and Clayton, L., 1983. Quaternary stratigraphy and history in the southern part of the Lake Agassiz basin, p. 40-74. In J.T. Teller and L. Clayton, eds., Glacial Lake Agassiz. Geological Association of Canada, St. John’s, Special Paper 26, 451 p.
- Grimm, E.C., 1987. CONISS: A FORTRAN-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences, 13: 13-35.
- _____ 2001. Trends and palaeoecological problems in the vegetation and climate history of the northern Great Plains, USA. Biology and Environment: Proceedings of the Royal Irish Academy of Sciences, 101B: 47-64.
- Hansen, B.C.S. and Engstrom, D.R., 1985. A comparison of numerical and qualitative methods of separating pollen of black and white spruce. Canadian Journal of Botany, 63: 2159-2163.
- Haraguchi, A., 1991. Effect of a flooding-drawdown cycle on vegetation in a system of floating peat mat and pond. Ecological Research, 6: 247-263.
- Harris, S.W. and Marshall, W.H., 1963. Ecology of water-level manipulations on a northern marsh. Ecology, 44: 331-343.
- Jeglum, J.K., 1971. Plant indicators of pH and water level in peatlands at Candle Lake, Saskatchewan. Canadian Journal of Botany, 49: 1661-1676.
- Johnson, D., Kershaw, L., MacKinnon, A. and Pojar, J. 1995. Plants of the Western Boreal Forest and Aspen Parkland. Lone Pine Publishing, Edmonton, 392 p.
- Johnston, W.A., 1946. Glacial Lake Agassiz With Special Reference to the Mode of Deformation of the Beaches. Geological Survey of Canada Memoir 128, 20 p.
- Kehew, A.E. and Clayton, L., 1983. Late Wisconsin floods and the development of the Souris-Pembina spillway system in Saskatchewan, North Dakota, and Manitoba, p. 187-209. In J.T. Teller and L. Clayton, eds., Glacial Lake Agassiz. Geological Association of Canada, St. John’s, Special Paper 26, 451 p.
- Kehew, A.E. and Lord, M.L., 1986. Origin and large-scale erosional features of glacial-lake spillways in the northern Great Plains. Bulletin of the Geological Society of America, 97: 162-177.
- Kehew, A.E. and Teller, J.T., 1994. History of the Late Glacial runoff along the southwestern margin of the Laurentide Ice Sheet. Quaternary Science Reviews, 13: 859-877.
- Klassen, R.W., 1972. Wisconsin events and the Assiniboine and Qu'Appelle Valleys of Manitoba and Saskatchewan. Canadian Journal of Earth Sciences, 9: 544-560.
- _____ 1979. Pleistocene Geology and Geomorphology of the Riding Mountain and Duck Mountain Areas, Manitoba-Saskatchewan. Geological Survey of Canada, Ottawa, Memoir 396, 52 p.
- _____ 1983. Assiniboine Delta and the Assiniboine-Qu'Appelle Valley system – implication concerning the history of Lake Agassiz in southwestern Manitoba, p. 211-220. In J.T. Teller and L. Clayton, eds., Glacial Lake Agassiz. Geological Association of Canada, St. John’s, Special Paper 26, 451 p.
- Last, W.M., Vance, R.E., Wilson, S. and Smol, J.P., 1998. A multi-proxy record of early Holocene hydrologic change on the northern Great Plains of southwestern Saskatchewan, Canada. The Holocene, 8: 503-520.
- Leavitt, P.R., Vinebrook, R.D., Hall, R.I., Wilson, S.E, Smol, J.P., Vance, R.E. and Last, W.M., 1999. Multiproxy record of prairie lake response to climate change and human activity, Clearwater Lake, Saskatchewan, p. 125-138. In D.S. Lemmen and R.E. Vance, eds., Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluating the Impacts of Climate Change on the Southern Canadian Prairies. Geological Survey of Canada, Ottawa, Bulletin 534, 295 p.
- Lévesque, P.E.M., Dinel, H. and Larouche, A., 1988. Guide to the Identification of Plant Macrofossils in Canadian Peatlands. Agriculture Canada, Research Branch, Ottawa, Publication 1817, 65 p.
- Martin, A.C. and Barkley, W.D., 2000. Seed Identification Manual. Reprint. Blackburn, Caldwell, 221 p.
- Montgomery, F.H., 1977. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. University of Toronto Press, 232 p.
- Ritchie, J.C., 1969. Absolute pollen frequencies and carbon-14 age of a section of Holocene lake sediment from the Riding Mountain area of Manitoba. Canadian Journal of Botany, 47: 1345-1349.
- _____ 1976. The Late-Quaternary vegetational history of the western interior of Canada. Canadian Journal of Botany, 54: 1793-1818.
- Ritchie, J.C., Cwynar, L.C. and Spear, R.W., 1983. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature, 305: 126-128.
- Ritchie, J.C. and Harrison, S.P., 1993. Vegetation, lake levels, and climate in western Canada during the Holocene, p. 401-414. In H.E. Wright Jr., J.E. Kutzbach, T. Webb III, W.F. Ruddiman, F.E. Street-Perrott and P.J. Bartlein, eds., Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 569 p.
- Ritchie, J.C. and Lichti-Federovich, S., 1968. Holocene pollen assemblages from the Tiger Hills, Manitoba. Canadian Journal of Earth Sciences, 5: 873-880.
- Running IV, G.L., Havholm, K., Boyd, M. and Wiseman, D., 2002. Holocene stratigraphy and geomorphology of Flintstone Hill, Lauder Sandhills, glacial Lake Hind basin, southwestern Manitoba, Canada. Géographie physique et Quaternaire, 56: 291-303.
- Schweger, C.E. and Hickman, M., 1989. Holocene paleohydrology of central Alberta: Testing the general-circulation-model climate simulations. Canadian Journal of Earth Sciences, 26: 1826-1833.
- Shang, Y. and Last, W.M., 1999. Mineralogy, lithostratigraphy, and inferred geochemical history of North Ingebrigt Lake, Saskatchewan, p. 99-110. In D.S. Lemmen and R.E. Vance, eds., Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluating the Impacts of Climate Change on the Southern Canadian Prairies. Geological Survey of Canada, Ottawa, Bulletin 534, 295 p.
- Smith, D.G. and Fisher, T.G., 1993. Glacial Lake Agassiz: The Northwestern outlet and paleoflood. Geology, 21: 9-12.
- Stuiver, M. and Reimer, P.J., 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon, 35: 215-230.
- Sun, C., 1996. Sedimentology and Geomorphology of the Glacial Lake Hind Area, Southwestern Manitoba, Canada. Ph.D. thesis, University of Manitoba, Winnipeg, 189 p.
- Sun, C. and Teller, J.T., 1997. Reconstruction of glacial Lake Hind in southwestern Manitoba, Canada. Journal of Paleolimnology, 17: 9-21.
- Teller, J.T., 1989. Importance of the Rossendale site in establishing a deglacial chronology along the southwestern margin of the Laurentide Ice Sheet. Quaternary Research, 32: 12-23.
- Teller, J.T., Risberg, J., Matile, G. and Zoltai, S., 2000. Postglacial history and paleoecology of Wampum, Manitoba, a former lagoon in the Lake Agassiz basin. Bulletin of the Geological Society of America, 112: 943-958.
- Teller, J.T. and Thorleifson, L.H., 1983. The Lake Agassiz-Lake Superior connection, p. 261-290. In J.T. Teller and L. Clayton, eds., Glacial Lake Agassiz. Geological Association of Canada, St. John’s, Special Paper 26, 451 p.
- Teller, J.T., Thorleifson, L.H., Dredge, L.A., Hobbs, H.C. and Schreiner, B.T., 1983. Maximum extent and major features of Lake Agassiz, p. 43-45. In J.T. Teller and L. Clayton, eds., Glacial Lake Agassiz. Geological Association of Canada, St. John’s, Special Paper 26, 451 p.
- Thompson, F.L., Hermanutz, L.A. and Innes, D.J., 1998. The reproductive ecology of distylous Menyanthes trifoliata (Menyanthaceae). Canadian Journal of Botany, 76: 818-828.
- Thorleifson, L.H., 1996. Review of Lake Agassiz history, p. 55-84. In J.T. Teller, L.H. Thorleifson, G. Matile, and W.C. Brisbin, eds., Sedimentology, Geomorphology, and History of the Central Lake Agassiz Basin. Geological Association of Canada/Mineralogical Association of Canada, Joint Annual Meeting (Winnipeg, Manitoba), Fieldtrip Guidebook, 101 p.
- Vance, R.E., Clague, J.J. and Mathewes, R.W., 1993. Holocene paleohydrology of a hypersaline lake in southeastern Alberta. Journal of Paleolimnology, 8: 103-120.
- Wallace, W.G., 2002. Eolian sand dunes of the glacial Lake Hind basin, Manitoba, Canada. M.Sc. thesis, University of Wisconsin-Madison, 69 p.
- Warner, B.G., 1990. Plant macrofossils. In B.G. Warner, ed., Methods in Quaternary Ecology. Geoscience Canada, St. John’s, Reprint Series 5, 170 p.
- Wiken, E.B., 1986. Terrestrial Ecozones of Canada. Environment Canada, Lands Directorate, Ottawa, Ecological Land Classification Series 19, 26 p.
- Yansa, C.H., 1998. Holocene paleovegetation and paleohydrology of a prairie pothole in southern Saskatchewan, Canada. Journal of Paleolimnology, 19: 429-441.
- Yansa, C.H. and Basinger, J.F., 1999. A postglacial plant macrofossil record of vegetation and climate change in southern Saskatchewan, p. 139-154. In D. Lemmen and R.E. Vance, eds., Holocene Climate and Environmental Change in the Palliser Triangle: A Geoscientific Context for Evaluating the Impacts of Climate Change on the Southern Canadian Prairies. Geological Survey of Canada, Ottawa, Bulletin 534, 295 p.
- Yu, Z. and McAndrews, J.H., 1994. Holocene water levels at Rice Lake, Ontario, Canada: Sediment, pollen and plant-macrofossil evidence. The Holocene, 4: 141-152.
- Yu, Z., McAndrews, J.H. and Siddiqi, D., 1996. Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Canadian Journal of Botany, 74: 1602-1615.
- Yu, Z. and Wright, H.E., Jr., 2001. Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth-Science Reviews, 52: 333-369.
- Zoltai, S.C., 1975. Southern Limit of Coniferous Trees on the Canadian Prairies. Environment Canada Forestry Service, Northern Forest Research Centre, Edmonton, Information Report NOR-X-128, 12 p.