Résumés
Résumé
Le mouvement bricoleur (maker) connaît une popularité croissante dans les écoles du monde entier, mais la recherche, en particulier en français, est encore à un stade émergent. Cet article propose une revue de la portée des projets bricoleur dans les salles de classe de la 4e à la 8e année (secondaire 2) à l’échelle internationale, qui vise à analyser leurs descriptions, le déroulement, les outils utilisés et les retombées sur les élèves et le personnel enseignant. Sur 1 900 études initialement recensées et 68 articles scientifiques retenus aux fins d’analyse, l’étude définit trois phases principales des projets bricoleur : 1) l’inspiration et la préparation, 2) la mise en œuvre et la réalisation, et 3) la présentation et la recontextualisation, et elle souligne l’équilibre entre les outils numériques et physiques dans les études du corpus. Elle examine aussi les retombées sur les élèves à travers les dimensions affectives, sociales, disciplinaires et métacognitives, ainsi que sur le personnel en ce qui a trait aux dimensions pédagogiques, affectives et sociales. Des exemples de projets bricoleur disciplinaires, interdisciplinaires et transdisciplinaires sont présentés, illustrant l’ampleur et le potentiel du mouvement bricoleur. Ces résultats sont essentiels pour renforcer la formation enseignante, en s’appuyant sur les recommandations issues de recherches récentes, afin de favoriser la conception et l’intégration de projets bricoleur dans les salles de classe.
Mots-clés :
- bricoleur,
- formation enseignante,
- maker,
- revue de la portée,
- technologies éducatives
Abstract
The rise in popularity of the maker movement in schools is evident around the globe, yet research, particularly in French, is still in early stages. This article provides a scoping review of maker projects in grades four through eight classrooms in elementary schools from around the globe, aiming to uncover their implementation, materials used, and outcomes on students and teachers. From 1900 initial studies, 68 scientific articles were analyzed. This article outlines the three stages of maker projects: 1) inspiration and preparation, 2) implementation and realization, and 3) presentation and recontextualization, while highlighting an equal mix of digital and physical tools within the selected papers. It also discusses the impact on students across affective, social, disciplinary, and metacognitive dimensions, as well as on teachers, including pedagogical, affective, and social outcomes. Examples of disciplinary, interdisciplinary, and transdisciplinary maker projects are highlighted, showcasing the broad scope and potential of maker education. These findings are essential for strengthening teacher education with research-informed best practices for designing and integrating maker projects in classrooms.
Keywords:
- digital technologies,
- maker,
- maker education,
- scoping review,
- teacher education
Parties annexes
Bibliographie
- Albers, B., & Pattuwage, L. (2017). Implementation in education: Findings from a scoping review. Evidence for Learning, 10.
- Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
- Assaf, L. C., Pakamile, P., & Brooks, J. (2021). Superheroes and community innovators: Opportunities to engage in critical literacy in a makerspace camp in rural South Africa. Language Arts, 98(6), 315–329. https://doi.org/10.58680/la202131331
- Barton, A. C., Tan, E., & Greenberg, D. (2017). The makerspace movement : Sites of possibilities for equitable opportunities to engage underrepresented youth in STEM. Teachers College Record, 119(6), 1–44. https://doi.org/10.1177/016146811711900608
- Becker, S., & Jacobsen, M. (2019). How can I build a model if I don’t know the answer to the question? : Developing student and teacher sky scientist ontologies through making. International Journal of Science and Mathematics Education, 17(Suppl 1), 31–48. https://doi.org/10.1007/s10763-019-09953-8
- Becker, S., & Jacobsen, M. (2021). A year at the improv: The evolution of teacher and student identity in an elementary school makerspace. Teaching Education, 34(1), 1–18. https://doi.org/10.1080/10476210.2021.1978968
- Bevan, B. (2017). The promise and the promises of making in science education. Studies in Science Education, 53(1), 75–103. https://doi.org/10.1080/03057267.2016.1275380
- Bevan, B., Ryoo, J. J., Vanderwerff, A., Wilkinson, K., & Petrich, M. (2020). I see students differently : Following the lead of maker educators in defining what counts as learning. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.00121
- Bishop, R., & Lepou, S. (2018). How can a makerspace in the school setting support increased motivation, engagement, and achievement for Pasifika and Māori learners? Set. Research Information for Teachers, 1, 19–24. https://doi.org/10.18296/set.0098
- Blais, M., & Martineau, S. (2006). L’analyse inductive générale : description d’une démarche visant à donner un sens à des données brutes. Recherches qualitatives, 26(2), 1–18. https://doi.org/10.7202/1085369ar
- Bosqué, C. (2015). Des FabLabs dans les marges : détournements et appropriations. Journal des anthropologues, 3(142–143), 49–76. https://doi.org/10.4000/jda.6207
- Bosqué, C., Noor, O., & Ricard, L. (2014). Fablabs, etc. Les nouveaux lieux de fabrication numérique. Eyrolles.
- Buchholz, B., Shively, K., Peppler, K., & Wohlwend, K. (2014). Hands on, hands off: Gendered access in crafting and electronics practices. Mind, Culture, and Activity, 21(4), 278–297. https://doi.org/10.1080/10749039.2014.939762
- Bull, G., Schmidt-Crawford, D. A., McKenna, M. C., & Cohoon, J. (2017). Storymaking: Combining making and storytelling in a school makerspace. Theory into Practice, 56(4), 271–281. https://doi.org/10.1080/00405841.2017.1348114
- Caratachea, M. X., Greene, M. D., & Jones, W. M. (2023). Maker-centered professional learning for inservice and preservice K-12 educators: A systematic literature review. TechTrends, 67, 648–663. https://doi.org/10.1007/s11528-023-00865-7
- Chen, C.-S., & Lin, J.-W. (2019). A practical action research study of the impact of maker-centered STEM-PjBL on a rural middle school in Taiwan. International Journal of Science and Mathematics Education, 17(Suppl 1), 85–108. https://doi.org/10.1007/s10763-019-09961-8
- Chu, S. L., Angello, G., Saenz, M., & Quek, F. (2017). Fun in Making: Understanding the experience of fun and learning through curriculum-based Making in the elementary school classroom. Entertainment Computing, 18, 31–40. https://doi.org/10.1016/j.entcom.2016.08.007
- Clapp, E., Ross, J., Ryan, J. O., & Tishman, S. (2017). Maker-centered learning. Empowering young people to shape their worlds. Jossey-Bass.
- Cotnam-Kappel, M., Hagerman, M., & Duplàa, E. (2020). La formation bricoleur : un modèle informé par les expériences et voix du personnel enseignant. Revue des sciences de l’éducation, 46(1), 117–150. https://doi.org/10.7202/1070729ar
- Dalton, B. (2020). Bringing together multimodal composition and maker education in K–8 classrooms. Language Arts, 97(3), 159–171. https://doi.org/10.58680/la202030415
- Davidson, A.-L., & Price, D. W. (2018). Does your school have the maker fever? An experiential learning approach to developing maker competencies. LEARNing Landscapes, 11(1), 103–120. https://doi.org/10.36510/learnland.v11i1.926
- Friend, L., & Mills, K. A. (2021). Towards a typology of touch in multisensory makerspaces. Learning, Media and Technology, 46(4), 465–482. https://doi.org/10.1080/17439884.2021.1928695
- Fu, Y., Zhang, D., & Jiang, H. (2022). Students’ attitudes and competences in modeling using 3D cartoon toy design maker. Sustainability, 14(4), 2176. https://doi.org/10.3390/su14042176
- Geser, G., Hollauf, E.-M., Hornung-Prähauser, V., Schön, S., & Vloet, F. (2019). Makerspaces as social innovation and entrepreneurship learning environments: The DOIT learning program. Discourse and Communication for Sustainable Education, 10(2), 60–71. https://doi.org/10.2478/dcse-2019-0018
- Godhe, A. L., Lilja, P., & Selwyn, N. (2019). Making sense of making: Critical issues in the integration of maker education into schools. Technology, Pedagogy and Education, 28(3), 317–328. https://doi.org/10.1080/1475939X.2019.1610040
- Hagerman, M. S. (2017). Les Bricoscientifiques: Exploring the intersections of disciplinary, digital, and maker literacies instruction in a Franco-Ontarian School. Journal of Adolescent & Adult Literacy, 61(3), 319–325. https://www.jstor.org/stable/26631130
- Hagerman, M. S., Cotnam-Kappel, M., Turner, J., & Hughes, J. (2022). Literacies in the Making: A descriptive study of three fifth-grade students’ digital-physical meaning-making practices while crafting musical instruments from recycled materials. Technology, Pedagogy and Education, 3(1), 63–84. https://www.tandfonline.com/doi/epub/10.1080/1475939X.2021.1997794?needAccess=true
- Halverson, E., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495–504. https://doi.org/10.17763/haer.84.4.34j1g68140382063
- Hansen, A. K., McBeath, J. K., & Harlow, D. B. (2019). No bones about it: How digital fabrication changes student perceptions of their role in the classroom. Journal of Pre-College Engineering Education Research (J-PEER), 9(1), 95–116. https://doi.org/10.7771/2157-9288.1155
- Harlow, D., & Hansen, A. (2018). School maker faires. Science and Children, 55(7), 30–37. https://doi.org/10.2505/4/sc18_055_07_30
- Hébert, C., & Jenson, J. (2020). Making in schools: Student learning through an e-textiles curriculum. Discourse, 41(5), 740–761. https://doi.org/10.1080/01596306.2020.1769937
- Herro, D., Quigley, C., & Abimbade, O. (2021a). Assessing elementary students’ collaborative problem-solving in makerspace activities. Information and Learning Science, 122(11/12), 774–794. https://doi.org/10.1108/ILS-08-2020-0176
- Herro, D., Quigley, C., Plank, H., & Abimbade, O. (2021b). Understanding students’ social interactions during making activities designed to promote computational thinking. The Journal of Educational Research, 114(2), 183–195. https://doi.org/10.1080/00220671.2021.1884824
- Holbert, N. (2016). Leveraging cultural values and « ways of knowing » to increase diversity in maker activities. International Journal of Child-Computer Interaction, 9–10, 33–39. https://doi.org/10.1016/j.ijcci.2016.10.002
- Hollweck, T., Cotnam-Kappel, M., Hargreaves, A., & Boultif, A. (2023). Des écoles se prennent au jeu après la pandémie : le réseau canadien des écoles ludiques. Magazine EdCan. https://www.edcan.ca/articles/des-ecoles-se-prennent-au-jeu-apres-la-pandemie/?lang=fr
- Hsu, P.-S., Lee, E. M., Ginting, S., Smith, T. J., & Kraft, C. (2019). A case study exploring non-dominant youths’ attitudes toward science through making and scientific argumentation. International Journal of Science and Mathematics Education, 17(Suppl 1), 185–207. https://doi.org/10.1007/s10763-019-09997-w
- Hughes, J., Morrison, L., Mamolo, A., Laffier, J., & de Castell, S. (2019). Addressing bullying through critical making. British Journal of Educational Technology, 50(1), 309–325. https://doi.org/10.1111/bjet.12714
- Hughes, J. M. (2017). Digital making with « at-risk » youth. The International Journal of Information and Learning Technology, 34(2), 102–113. https://doi.org/10.1108/IJILT-08-2016-0037
- Iivari, N., Kinnula, M., & Molin-Juustila, T. (2018). You have to start somewhere: Initial meanings making in a design and making project. Dans Proceedings of the 17th ACM Conference on Interaction Design and Children (p. 80–92). https://doi.org/10.1145/3202185.3202742
- Iwata, M., Pitkänen, K., Laru, J., & Mäkitalo, K. (2020). Exploring potentials and challenges to develop twenty-first century skills and computational thinking in K-12 maker education. Frontiers in Education, 5, 87. https://doi.org/10.3389/feduc.2020.00087
- Jin, Y., & Harron, J. R. (2022). Maker education infusion in educator preparation programs: A 2025 vision for technology and teacher education. Journal of Technology and Teacher Education, 30(2), 265–274. https://www.learntechlib.org/primary/p/221081/
- Kajamaa, A., & Kumpulainen, K. (2019). Agency in the making: Analyzing students’ transformative agency in a school-based makerspace. Mind, Culture and Activity, 26(3), 266–281. https://doi.org/10.1080/10749039.2019.1647547
- Ke, F., Clark, K. M., & Uysal, S. (2019). Architecture game-based mathematical learning by making. International Journal of Science and Mathematics Education, 17(Suppl 1), 167–184. https://doi.org/10.1007/s10763-019-09996-x
- Kendrick, M., Namazzi, E., Becker-Zayas, A., & Tibwamulala, E. N. (2020). Closing the HIV and AIDS « information gap » between children and parents: An exploration of makerspaces in a Ugandan primary school. Education Sciences, 10(8), 193. https://doi.org/10.3390/educsci10080193
- Kumpulainen, K., Kajamaa, A., Leskinen, J., Byman, J., & Renlund, J. (2020). Mapping digital competence: Students’ maker literacies in a school’s makerspace. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.00069
- Leinonen, T., Virnes, M., Hietala, I., & Brinck, J. (2020). 3D printing in the wild: Adopting digital fabrication in elementary school education. The International Journal of Art & Design Education, 39(3), 600–615. https://doi.org/10.1111/jade.12310
- Martin, W. B., Yu, J., Wei, X., Vidiksis, R., Patten, K. K., & Riccio, A. (2020). Promoting science, technology, and engineering self-efficacy and knowledge for all with an autism inclusion maker program. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.00075
- Martinez, S. L., & Stager, G. (2013). Invent to learn. Making, tinkering and engineering in the classroom. Constructing Modern Knowledge Press.
- McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS peer review of electronic search strategies: 2015 guideline statement. Journal of Clinical Epidemiology, 75, 40–46.
- Montgomery, S., & Madden, L. (2019). Novel engineering: Integrating literacy and engineering design in a fifth grade classroom. Science Activities, 56(1), 27–32. https://doi.org/10.1080/00368121.2019.1638744
- Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic reviews or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology, 18. https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0611-x
- Murai, Y., & San Juan, A. Y. (2023). Making as an opportunity for classroom assessment: Canadian maker educators’ views on assessment. International Journal of Child-Computer Interaction, 39, 100631. https://doi.org/10.1016/j.ijcci.2023.100631
- Mylonas, G., Amaxilatis, D., Pocero, L., Markelis, I., & Hofstaetter, J. (2019). An educational IoT lab kit and tools for energy awareness in European schools. International Journal of Child-Computer Interaction, 20, 43–53. https://doi.org/10.1016/j.ijcci.2019.03.003
- Ng, O.-L., & Chan, T. (2019). Learning as making: Using 3D computer-aided design to enhance the learning of shape and space in STEM-integrated ways. British Journal of Educational Technology, 50(1), 294–308. https://doi.org/10.1111/bjet.12643
- Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017). Empirical studies on the Maker Movement, a promising approach to learning: A literature review. Entertainment Computing, 18, 57–78. https://doi.org/10.1016/j.entcom.2016.09.002
- Papert, S. (1980). Mindstorms. Children, computers, and powerful ideas. Basic Books.
- Parent, S., Michaud, O., Davidson, A. L., Sanabria, J., & Artemova, I. (2022). Apprentissage non formel dans quatre espaces créatifs québécois : analyse basée sur la théorie de l’activité. Revue internationale du CRIRES. Innover dans la tradition de Vygotsky, 6(3), 66–85. https://doi.org/10.51657/ric.v6i2.51549
- Peters, M., Godfrey, C., Mclnerey, P., Baldini Soares, C., Khalil, H., & Parker, D. (2015). Joanna Briggs Institute Reviewers’ Manual. 2015 Edition. The Joanna Briggs Institute.
- Ramey, K. E., & Stevens, R. (2019). Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learning, Culture and Social Interaction, 23, 100262. https://doi.org/10.1016/j.lcsi.2018.11.009
- Riikonen, S. M., Kangas, K., Kokko, S., Korhonen, T., Hakkareinen, K., & Seitamaa-Hakkarainen, P. (2020). The development of pedagogical infrastructures in three cycles of maker-centered learning projects. Design and Technology Education. An International Journal, 25(2), 29–49.
- Rodriguez, S. R., Harron, J. R., & DeGraff, M. W. (2018). UTeach Maker: A micro-credentialing program for preservice teachers. Journal of Digital Learning in Teacher Education, 34(1), 6–17. https://doi.org/10.1080/21532974.2017.1387830
- Rouse, R., & Gillespie Rouse, A. (2022). Taking the maker movement to school: A systematic review of preK-12 school-based makerspace research. Educational Research Review, 35, 100413. https://doi.org/10.1016/j.edurev.2021.100413
- Schad, M., & Jones, W. M. (2020). The maker movement and education: A systematic review of the literature. Journal of Research on Technology in Education, 52(1), 65 -78. https://doi.org/10.1080/15391523.2019.1688739
- Searle, K. A., Fields, D. A., & Kafai, Y. B. (2016). Is sewing a « girl’s sport »? Addressing gender issues in making with electronic textiles. Dans K. Peppler, E. Halverson, et Y. B. Kafai M. (dir.), Makeology. Makers as Learners, vol. 2 (p. 72 -84). Routledge.
- Thanapornsangsuth, S., & Holbert, N. (2020). Culturally relevant constructionist design: Exploring the role of community in identity development. Information and Learning Science, 121(11/12), 847–867. https://doi.org/10.1108/ILS-02-2020-0024
- Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation, 27(2), 237–246. https://doi.org/10.1177/1098214005283748
- Tofel-Grehl, C., Jex, E., Searle, K., Ball, D., Zhao, X., & Burnell, G. (2020). Electrifying: One teacher’s discursive and instructional changes through engagement in e-textiles to teach science content. Contemporary Issues in Technology and Teacher Education, 20(2), 293–314. https://www.learntechlib.org/primary/p/213819/
- Tricco, A.-C., Lillie, E., Zarin, W., O’Brien, K.-K., Colquhoun, H., Levac, D., Moher, D., Peters, M.-D., Horsley, T., Weeks, L., Hempel, S., Aki, E. A., Chang, C., McGowan, J., Stewart, L., Harling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR) : Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
- Trust, T., & Maloy, R. W. (2018). Makerspaces and 3D printing: New directions for history learning. Social Education, 82(2), 101–106.
- Vossoughi, S., & Bevan, B. (2014). Making and tinkering: A review of the literature. National Research Council Committee on Out of School Time STEM, 67, 1–55.
- Vossoughi, S., Hooper, P. K., & Escudé, M. (2016). Making through the lens of culture and power: Toward transformative visions for educational equity. Harvard Educational Review, 86(2), 206–232. https://doi.org/10.17763/0017-8055.86.2.206
- Weng, X., Cui, Z., Ng, O.-L., Jong, M. S. Y., & Chiu, T. K. F. (2022). Characterizing students’ 4C skills development during problem-based digital making. Journal of Science Education and Technology, 31(3), 372–385. https://doi.org/10.1007/s10956-022-09961-4
- Wright, L., Shaw, D., Gaidds, K., Lyman, G., & Sorey, T. (2018). 3D pit stop printing. Science and Children, 55(7), 55–63. https://doi.org/10.2505/4/sc18_055_07_55