Résumés
Abstract
Generative Artificial Intelligence (GenAI) is re-defining the way higher education design is taught and learned. The explosive growth of GenAI in design practice demands that design educators ensure students are prepared to enter the design profession with the knowledge and experience of using GenAI. To facilitate GenAI’s introduction in a project-based context, it is suggested that design educators use critical engagement as a starting point to assure students understand the strengths and weakness of GenAI in the creative design process. There is little guidance on how to systematically integrate GenAI in design studio practice while maintaining a critical perspective of the ethical issues it has engendered. This research explores student attitudes toward GenAI, frequency of its use, and student perception of its impact on their future design careers. A survey of a representative cohort of graphic design students (n = 17) reveals a pragmatic acceptance that GenAI will change how design is practiced and a concurrent willingness to learn more on how to use it effectively and ethically. The survey validates the need for design educators to engage and guide students critically in their understanding and use of GenAI within studio and professional practice.
Keywords:
- Artificial Intelligence,
- Design Curriculum,
- Student Attitudes,
- AI integration,
- generative AI,
- graphic design,
- graphic design education
Résumé
L'intelligence artificielle générative (GenAI) redéfinit la manière dont la conception de l'enseignement supérieur est enseignée et apprise. La croissance explosive de la GenAI dans la pratique de la conception graphique exige que les éducateurs s'assurent que les étudiants sont préparés à entrer dans la profession de concepteur graphique avec les connaissances et l'expérience de l'utilisation de la GenAI. Pour faciliter l'introduction de la GenAI dans un contexte de projet, il est suggéré que les éducateurs utilisent un engagement critique comme point de départ pour s'assurer que les étudiants comprennent les forces et les faiblesses de cette intelligence dans le processus créatif de conception. Il y a peu de directives sur la manière de l’intégrer systématiquement dans la pratique du studio de conception tout en maintenant une perspective critique sur les questions éthiques qu'elle a engendrées. Cette recherche explore les attitudes des étudiants envers l’intelligence artificielle, la fréquence de son utilisation et la perception des étudiants de son impact sur leur future carrière de concepteur graphique. Une enquête auprès d'un groupe représentatif d'étudiants en conception graphique (n = 17) révèle une acceptation pragmatique du fait que la GenAI changera la manière dont la conception graphique est pratiquée et une volonté concomitante d'en apprendre davantage sur son utilisation efficace et éthique. L'enquête valide le besoin pour les éducateurs d'impliquer et de guider les étudiants de manière critique dans leur compréhension et utilisation de la GenAI au sein de la pratique en studio et en milieu professionnel.
Mots-clés :
- attitudes des étudiants,
- conception graphique,
- éducation en conception graphique,
- IA générative,
- intégration de l'IA,
- intelligence artificielle,
- programme de design
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Bibliography
- Auernhammer, J. (2020, August 11-14). Human-centered AI: The role of human-centered design research in the development of AI. In Synergy - DRS International Conference 2020, Brisbane.
- Bamford, A. (2023). How are university design courses adapting to incorporate AI? Design Week. https://tinyurl.com/yb8mncc2
- Bartlett, K. A., & Camba, J. D. (2024). Generative artificial intelligence in product design education: Navigating concerns of originality and ethics. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 55–64. https://doi.org/10.9781/ijimai.2024.02.006
- Bearman, M., Ryan, J., & Ajjawi, R. (2023). Discourses of artificial intelligence in higher education: A critical literature review. Higher Education, 86, 369–385. https://doi.org/10.1007/s10734-022-00937-2
- Braue, D. (2023). Educators must engage with students on GenAI policy. ACS Information Age. https://ia.acs.org.au/article/2023/educators-must-engage-with-students-on-gen-ai-policy.html
- Cain, J., & Pino, Z. (2023). Navigating design, data, and decision in an age of uncertainty. She ji - The Journal of Design, Economics, and Innovation, 9(2), 197–212. https://doi.org/10.1016/j.sheji.2023.07.002
- Creswell, J. W. (2008). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Sage.
- Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(22), 1–22. https://doi.org/10.1186/s41239-023-00392-8
- Davis, Meredith (Editor). (2023). The future of design education: Rethinking design education for the 21st century. She ji - The Journal of Design, Economics, and Innovation, 9(2), 91–308. https://www.sciencedirect.com/journal/she-ji-the-journal-of-design-economics-and-innovation/vol/9/issue/2
- DeBrusk, C. (2018). The risk of machine-learning bias (and How to Prevent It). MIT Sloan Management Review. https://sloanreview.mit.edu/article/the-risk-of-machine-learning-bias-and-how-to-prevent-it/
- Dubberly, H., & Pangaro, P. (2023). How might we help designers understand systems. She ji - The Journal of Design, Economics, and Innovation, 9(2), 135–156. https://doi.org/10.1016/j.sheji.2023.05.003
- Fleischmann, K. (2013). Big Bang technology: What’s next in design education, radical innovation or incremental change? Journal of Learning Design, Special Issue Design Education, 6(3), 1–17. https://www.jld.edu.au/article/view/144.html
- Fleischmann, K. (2015). Democratisation of design and design learning - How do we educate the next-generation designer. International Journal of Arts & Sciences, 8(6), 101–108. http://www.universitypublications.net/ijas/0806/pdf/B5R188.pdf
- Fleischmann, K. (2023). German design educators' post-covid challenges: Online, artificial intelligence (AI) and government data restrictions. Design and Technology Education: An International Journal 28(1), 135–153. https://openjournals.ljmu.ac.uk/DATE/article/view/1176
- Fleischmann, K. (2024). Making the case for introducing generative artificial intelligence (AI) into design curricula. Art, Design & Communication in Higher Education. https://doi.org/10.1386/adch_00088_1
- Fielding, N. G. (2012). Triangulation and mixed methods designs: Data integration with new research technologies. Journal of Mixed Methods Research, 6(2), 124–136. https://doi.org/10.1177/1558689812437101
- Figoli, F. A., Rampino, L., & Mattioli, F. (2022, June 25 - July 3). AI in design idea development: A workshop on creativity and human-AI collaboration. In Proceedings of the Design Research Society Conference (DRS2022), Bilbao, Spain.
- Gibbons, S., & Moran, K. (2024). Design taste vs. technical skills in the era of AI. Nielsen Norman Group. https://www.nngroup.com/articles/taste-vs-technical-skills-ai/
- Gilbert, T. (2023). “AI revolution” means design studios could look very different in three years. Design Week. https://www.designweek.co.uk/issues/20-february-24-february-2023/ai-design-studios-future-look/
- Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(692), 1–13. https://doi.org/10.3390/educsci13070692
- Griffith University. (2023). Artificial intelligence and research outputs. Research Integrity Resource Sheets (RIRS). https://www.griffith.edu.au/__data/assets/pdf_file/0029/1763444/17_AI.pdf
- Guinness, H. (2023). How does ChatGPT work? https://zapier.com/blog/how-does-chatgpt-work/
- Hommés Studio. (2023). Interior design artificial intelligence and its amazing uses. Interiors Special Projects. https://tinyurl.com/4tf574uu
- Huang, Y.-C. J., Wensveen, S., & Funk, M. (2023). Experiential speculation in vision-based AI design education: Designing conventional and progressive AI Futures. International Journal of Design, (2), 1–17. https://doi.org/10.57698/v17i2.01
- Kauppinen, T., & Sivula, A. L. (2023). Conclusion. In M. J. Lehtonen, T. Kauppinen, & L. Sivula (Eds.), Design education across disciplines: Transformative learning experiences for the 21st century (pp. 261–271). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-23152-0
- Kaiko, N. (2023). The rise of artificial intelligence in interior design. https://www.kaikodesign.com.au/articles/the-rise-of-artificial-intelligence-in-interior-design
- Kelly, L. M., & Cordeiro, M. (2020). Three principles of pragmatism for research on organizational processes. Methodological Innovations, 13(2), 1–10. https://doi.org/10.1177/2059799120937242
- Kelly, V. (2023). Embracing a pedagogy of ambiguity in higher education. In M. J. Lehtonen, T. Kauppinen, & L. Sivula (Eds.), Design Education Across Disciplines - Transformative Learning Experiences for the 21st Century (pp. 71–89). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-23152-0
- Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 1–10. https://doi.org/10.1080/0142159X.2020.1755030
- Marr, B. (2023). The difference between GenAIand traditional AI: An easy explanation for anyone. Forbes. https://www.forbes.com/sites/bernardmarr/2023/07/24/the-difference-between-generative-ai-and-traditional-ai-an-easy-explanation-for-anyone/?sh=1213914b508a
- Matthews, B., Shannon, B., & Roxburgh, M. (2023). Destroy all humans: The dematerialisation of the designer in an age of automation and its impact on graphic design—A literature review. International Journal of Art & Design Education (iJADE), 1–17. https://doi.org/10.1111/jade.12460
- Meron, Y. (2022, June 25 - July 3). Graphic design and artificial intelligence: Interdisciplinary challenges for designers in the search for research collaboration. In Proceedings of the Design Research Society Conference (DRS2022), Bilbao, Spain.
- Miao, F., & Holmes, W. (2023). Guidance for GenAI in education and research. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000386693
- Monostori, L. (2019). Artificial Intelligence. In L. u. Laperrière & G. Reinhart (Eds.), CIRP Encyclopaedia of Production Engineering. Springer. https://doi.org/10.1007/978-3-642-20617-7_16703
- Morgan, D. L. (2007). Paradigms lost and pragmatism regained: Methodological implications of combining qualitative and quantitative methods. Journal of Mixed Methods Research, 1(1), 48–76. https://doi.org/DOI: 10.1177/2345678906292462
- Morrone, M. (2024). Copyright law is AI's 2024 battlefield. AXIOS. https://www.axios.com/2024/01/02/copyright-law-violation-artificial-intelligence-courts
- Morse, J. M., & Niehaus, L. (2009). Mixed method design: Principles and procedures (First Edition ed.). Routledge - Taylor and Francis Group. https://doi.org/10.4324/9781315424538
- Offenhuber, D. E., & Mountford, J. (2023). Reconsidering representation in college design curricula. She ji - The Journal of Design, Economics, and Innovation, 9(2), 264–282. https://doi.org/10.1016/j.sheji.2023.04.005
- Orr, S., & Shreeve, A. (2018). Art and design pedagogy in higher education: Knowledge, values and ambiguity in the creative curriculum. Routledge.
- Pavaloaia, V.-D., & Necula, S.-C. (2023). Artificial intelligence as a disruptive technology—A systematic literature review. Electronics, 12(1102), 1–37. https://doi.org/10.3390/electronics12051102
- Pinkwart, N. (2016). Another 25 years of AIED? Challenges and opportunities for intelligent educational technologies of the future. International Journal of Artificial Intelligence in Education, 26, 771–783. https://doi.org/10.1007/s40593-016-0099-7
- Punch, K. (2009). Introduction to research methods in education. Sage.
- Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. https://doi.org/10.1016/j.iotcps.2023.04.003
- Rees, K. (2023). What is AI hallucination? Can ChatGPT hallucinate? How-To Geek. http://tinyurl.com/y6pe4mkr
- Rossman, G. B., & Wilson, B. L. (1985). Numbers and words: Combining quantitative and qualitative methods in a single large-scale evaluation study. Evaluation Review, 9(5), 627–643. https://doi.org/10.1177/0193841X8500900505
- Schiff, D. (2021). Out of the laboratory and into the classroom: The future of artificial intelligence in education. AI & Society, 36, 331–348. https://doi.org/10.1007/s00146-020-01033-8
- Solly, M. (2019). Art project shows racial biases in artificial intelligence system. Smithsonian Magazine. https://www.smithsonianmag.com/smart-news/art-project-exposed-racial-biases-artificial-intelligence-system-180973207/
- Sun, P. (2024). A study of artificial intelligence in the production of film. In Proceedings of the 3rd International Conference on Public Art and Human Development (ICPAHD 2023), SHS Web of Conferences. https://doi.org/10.1051/shsconf/202418303004
- Taylor, J. (2023). Adobe to integrate AI into Photoshop amid fears of job losses and mass faking of images. The Guardian. https://www.theguardian.com/technology/2023/may/23/adobe-to-integrate-ai-into-photoshop-amid-fears-of-job-losses-and-mass-faking-of-images#:%7E:text=Ado%E2%80%A6
- Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433–460. https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf
- Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. Morgan Kaufman Publishers. https://doi.org/10.1016/C2013-0-07697-9
- Wernersson, J., & Persson, R. (2023). Exploring the potential impact of AI on the role of graphic content creators: Benefits, challenges, and collaborative opportunities. Jönköping University. https://hj.diva-portal.org/smash/get/diva2:1788167/fulltext01.pdf
- Wikipedia. (2024a). Turing test. https://en.wikipedia.org/wiki/Turing_test
- Wikipedia. (2024b). Deep Blue (chess computer). https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
- Wikipedia. (2024c). https://en.wikipedia.org/wiki/Jacquard_machine
- World Economic Forum. (2020). The Future of Jobs Report 2020. https://www.weforum.org/publications/the-future-of-jobs-report-2020/
- Wright, K. B. (2005). Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication, 10(3), 1–31. https://doi.org/10.1111/j.1083-6101.2005.tb00259.x
- Yang, Q. (2020). Designing AI products and services: An annotated syllabus. Medium. https://medium.com/design-of-ai-products/design-of-ai-products-and-services-an-annotated-syllabus-25f9511292a1
- Yeo, J. P.-H. (2023). Designing sustainable designs: Making designers future-ready. In M. J. Lehtonen, T. Kauppinen, & L. Sivula (Eds.), Design Education Across Disciplines - Transformative Learning Experiences for the 21st Century (pp. 221–234). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-23152-0
- Zawacki-Richter, O., Bond, M., Marín, V. I., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education - Where are the educators? International Journal of Educational Technology in Higher Education, 16(39). https://doi.org/10.1186/s41239-019-0171-0