Résumés
Abstract
CRISPR is currently viewed as the central tool for future gene therapy. Yet, many prominent scientists and bioethicists have expressed ethical concerns around CRISPR gene therapy. This paper provides a critical review of concerns about CRISPR gene therapy as expressed in the mainstream academic literature, paired with replies also generally found in that literature. The expressed concerns can be categorised into three types depending on whether they stress risk/benefit ratio, autonomy and informed consent, or concerns related to various aspects of justice. In the reviewed literature, we found no intrinsic objections to CRISPR gene therapy, even though many such objections were present in discussions of gene editing in the 1990s. The paper then proposes a brief outline for a practically applicable moral framework for public decision-making about CRISPR gene therapy and suggests how such a framework might be supported. We also suggest that this framework should govern public engagement about CRISPR gene therapy in order to reduce the risk that we make decisions about CRISPR gene therapy based on misperceptions, inflated views of risk, or unreasonable moral or religious views.
Keywords:
- biotechnology,
- convergence,
- CRISPR,
- gene therapy,
- mid-level principles,
- public engagement
Résumé
CRISPR est actuellement considéré comme l’outil central de la future thérapie génique. Pourtant, de nombreux scientifiques et bioéthiciens de renom ont exprimé des préoccupations éthiques concernant la thérapie génique CRISPR. L’article présente un examen critique des préoccupations concernant la thérapie génique CRISPR telles qu’elles sont exprimées dans la littérature académique courante, ainsi que les réponses que l’on trouve généralement dans cette littérature. Les préoccupations exprimées peuvent être classées en trois catégories selon qu’elles mettent l’accent sur le rapport risque/bénéfice, l’autonomie et le consentement éclairé, ou les préoccupations liées à divers aspects de la justice. Dans la littérature examinée, nous n’avons trouvé aucune objection intrinsèque à la thérapie génique CRISPR, même si beaucoup de ces objections étaient présentes dans les discussions sur l’édition de gènes dans les années 1990. Cet article propose un bref aperçu d’un cadre moral applicable en pratique pour la prise de décision publique sur la thérapie génique CRISPR, et suggère comment un tel cadre pourrait être soutenu. Nous suggérons également que ce cadre devrait régir l’engagement public sur la thérapie génique CRISPR afin de réduire le risque que nous prenions des décisions sur la thérapie génique CRISPR sur la base de perceptions erronées, de vues exagérées du risque ou de vues morales ou religieuses déraisonnables.
Mots-clés :
- biotechnologie,
- convergence,
- CRISPR,
- thérapie génique,
- principes de niveau intermédiaire,
- engagement public
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Remerciements / Acknowledgements
Le travail sur ce document a été généreusement financé par la Fondation Novo Nordisk, dans le cadre du projet Éthique convergente et éthique de la controverse (CEEC). Nous remercions Andreas Christiansen, Bjørn Gunnar Hallsson, Alexander Heape, Katla Hedinsdottir, Nanna Cecilie Halmsted Kongsholm, Gina Labovic, Jonas Aske Dam Rasmussen, Johan Jensen, Niels Gustav Døcker Husum et Annika Andersen pour leurs commentaires et la discussion critique des versions précédentes.
Work on this paper was generously funded by the Novo Nordisk Foundation as a part of the project Convergent Ethics and Ethics of Controversy (CEEC). Thanks to Andreas Christiansen, Bjørn Gunnar Hallsson, Alexander Heape, Katla Hedinsdottir, Nanna Cecilie Halmsted Kongsholm, Gina Labovic, Jonas Aske Dam Rasmussen, Johan Jensen, Niels Gustav Døcker Husum, and Annika Andersen for comments and critical discussion of earlier drafts.
Bibliography
- 1. Cai L, Fisher AL, Huang H, Xie Z. CRISPR-mediated genome editing and human diseases. Genes & Disease. 2016;3(4):244-51.
- 2. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nature Medicine. 2015;21(2):121-31.
- 3. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
- 4. Shin JW, Kim KH, Chao MJ, et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Human Molecular Genetics. 2016;25(20):4566-76.
- 5. Sánchez-Rivera FJ, Jacks T. Applications of the CRISPR-Cas9 system in cancer biology. Nature Reviews Cancer. 2015;15(7):387-95.
- 6. Rohn TT, Kim N, Isho NF, Mack JM. The potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s Disease. Journal of Alzheimer’s disease & Parkinsonism. 2018;8(3):439.
- 7. Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic editing of non-coding RNA genes with CRISPR/Cas9 ushers in a potential novel approach to study and treat schizophrenia. Frontiers in Molecular Neuroscience. 2017;10:28.
- 8. Wang P, Lin M, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Molecular Autism. 2015;6:55.
- 9. Holtug N. Altering humans—the case for and against human gene therapy. Cambridge Quarterly of Healthcare Ethics. 1997;6(2):157-74.
- 10. Giubilini A, Sanyal S. The ethics of human enhancement. Philosophy Compass. 2015;10(4):233-43.
- 11. Mo O. CRISPR-Cas9 human genome editing: challenges, ethical concerns and implications. Journal of Clinical Research and Bioethics. 2015;6(6).
- 12. Brokowski C, Adli M. CRISPR ethics: moral considerations for applications of a powerful tool. Journal of Molecular Biology. 2019;431(1):88-101.
- 13. Lander ES, Baylis F, Zhang F, et al. Adopt a moratorium on heritable genome editing. Nature. 2019;567(7747):165-8.
- 14. Gyngell C, Douglas T, Savulescu J. The ethics of germline gene editing. Journal of Applied Philosophy. 2017;34(4):498-513.
- 15. Viotti M, Victor AR, Griffin DK, et al. Estimating demand for germline genome editing: an in vitro fertilization clinic perspective. The CRISPR Journal. 2019;2(5):304-15.
- 16. Greely HT. Human germline genome editing: an assessment. The CRISPR Journal 2019;2(5):253-65.
- 17. v. Hammerstein AL, Eggel M, Biller-Andorno N. Is selecting better than modifying? An investigation of arguments against germline gene editing as compared to preimplantation genetic diagnosis. BMC Medical Ethics. 2019;20:83.
- 18. Ranisch R. Germline genome editing versus preimplantation genetic diagnosis: Is there a case in favour of germline interventions? Bioethics. 2020;34(1):60-9.
- 19. Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine. 2018;24(7):939-46.
- 20. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine. 2018;24(7):927-30.
- 21. Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology. 2018;42(8):487-500.
- 22. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nature Reviews Drug Discovery. 2017;16(2):89-100.
- 23. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Delivery. 2018;25(1):1234-57.
- 24. Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Human Gene Therapy. 2015;26(7):443-51.
- 25. Stella S, Montoya G. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays. 2016;38 (Suppl 1):S4-S13.
- 26. O’Geen H, Yu AS, Segal DJ. How specific is CRISPR/Cas9 really? Current Opinion in Chemical Biology. 2015;29:72-8.
- 27. Carroll D. Collateral damage: benchmarking off-target effects in genome editing. Genome Biology. 2019;20(1):114.
- 28. Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. The FEBS Journal. 2014;281(23):5186-93.
- 29. Jacobs KB, Yeager M, Zhou W, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics. 2012;44(6):651-8.
- 30. Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, et al. Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Scientific Reports. 2019;9:14900.
- 31. Mehravar M, Shirazi A, Nazari M, Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology. 2019:445(2):156-162.
- 32. Tan EP, Li Y, Velasco-Herrera Mdel C, Yusa K, Bradley A. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis. 2015;53(2):225-36.
- 33. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490-5.
- 34. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013;8(11):2281-308.
- 35. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology. 2014;32(6):577-82.
- 36. Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Developmental Biology. 2016;418(1):1-9.
- 37. Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chemical Biology. 2018;13(2):406-16.
- 38. Ormond KE, Mortlock DP, Scholes DT, et al. Human germline genome editing. American Journal of Human Genetics. 2017;101(2):167-76.
- 39. Smith KR, Chan S, Harris J. Human germline genetic modification: scientific and bioethical perspectives. Archives of Medical Research. 2012;43(7):491-513.
- 40. Smolenski J. CRISPR/Cas9 and germline modification: new difficulties in obtaining informed consent. Amercian Journal of Bioethics. 2015;15(12):35-7.
- 41. Habermas J. The Future of Human Nature. Cambridge, England: Polity; 2003.
- 42. Check Hayden E. Should you edit your children’s genes? Nature. 2016;530(7591):402-5.
- 43. Liao SM. Designing humans: A human rights approach. Bioethics. 2019;33(1):98-104.
- 44. Halpern J, O’Hara SE, Doxzen KW, Witkowsky LB, Owen AL. Societal and ethical impacts of germline genome editing: how can we secure human rights? The CRISPR Journal. 2019;2(5):293-8.
- 45. Hunter D. How to object to radically new technologies on the basis of justice: the case of synthetic biology. Bioethics. 2013;27(8):426-34.
- 46. Jasanoff S, Hurlbut JB, Saha K. Democratic governance of human germline genome editing. The CRISPR Journal. 2019;2(5):266-71.
- 47. Hildebrandt CC, Marron JM. Justice in CRISPR/Cas9 research and clinical applications. AMA Journal of Ethics. 2018;20(9):E826-33.
- 48. Ledford H. CRISPR, the disruptor. Nature. 2015;522(7554):20-4.
- 49. Feeney O, Cockbain J, Morrison M, Diependaele L, Van Assche K, Sterckx S. Patenting foundational technologies: lessons from CRISPR and other core biotechnologies. Amercian Journal of Bioethics. 2018;18(12):36-48.
- 50. Contreras JL. Is CRISPR different? considering exclusivity for researchtools, therapeutics, and everything in between. American Journal of Bioethics. 2018;18(12):59-61.
- 51. Cook-Deegan R. CRISPR patents: aspiring to coherent patent policy. American Journal of Bioethics. 2018;18(12):51-4.
- 52. de Graeff N, Dijkman LE, Jongsma KR, Bredenoord AL. Fair governance of biotechnology: patents, private governance, and procedural justice. American Journal of Bioethics. 2018;18(12):57-9.
- 53. Jasanoff S, Hurlbut JB. A global observatory for gene editing. Nature. 2018;555(7697):435-7.
- 54. Boggio A, Ho CWL. The human right to science and foundational technologies. American Journal of Bioethics. 2018;18(12):69-71.
- 55. Farrelly C. Gene patents and the social justice lens. American Journal of Bioethics. 2018;18(12):49-51.
- 56. Contreras JL, Sherkow JS. CRISPR, surrogate licensing, and scientific discovery. Science. 2017;355(6326):698-700.
- 57. Capps B, Mulvihill JJ, Joly Y, Lysaght T. The view of CRISPR patents through the lens of solidarity and the public good. American Journal of Bioethics. 2018;18(12):54-6.
- 58. Baumann M. CRISPR/Cas9 genome editing – new and old ethical issues arising from a revolutionary technology. NanoEthics. 2016;10(2):139-59.
- 59. Schultz-Bergin M. Is CRISPR an ethical game changer? Journal of Agricultural and Environmental Ethics. 2018;31(2):219-38.
- 60. Scherz P. The mechanism and applications of CRISPR-Cas9. The National Catholic Bioethics Quarterly. 2017;17(1):29-36.
- 61. Bosley KS, Botchan M, Bredenoord AL, et al. CRISPR germline engineering – the community speaks. Nature Biotechnology. 2015;33(5):478-86.
- 62. Vasiliou SK, Diamandis EP, Church GM, et al. CRISPR-Cas9 system: opportunities and concerns. Clinical Chemistry. 2016;62(10):1304-11.
- 63. Werner-Felmayer G, Shalev C. Human germline modification—a missing link. American Journal of Bioethics. 2015;15(12):49-51.
- 64. Macintosh KL. Enhanced Beings: Human Germline Modification and the Law. Cambridge: Cambridge University Press; 2018.
- 65. Coady CAJ. Playing god. In: Savulescu J, Bostrom N, editors. Human Enhancement: Oxford University Press; 2009. p. 155-80.
- 66. Held V. Feminist transformations of moral theory. Philosophy and Phenomenological Research. 1990;50(suppl):321-44.
- 67. Sheehan M. Making sense of the immorality of unnaturalness. Cambridge Quarterly of Healthcare Ethics. 2009;18(2):177-88.
- 68. Sandel MJ. The case against perfection. The Atlantic. 2004;293(3):50.
- 69. Kass LR. The wisdom of repugnance: why we should ban the cloning of humans. The New Republic. 1997;216(22):17-26.
- 70. Macpherson I, Roqué MV, Segarra I. Ethical challenges of germline genetic enhancement. Frontiers in Genetics. 2019;10:767.
- 71. Launis V. Human gene therapy and the slippery slope argument. Medicine, Health Care, and Philosophy. 2002;5(2):169-79.
- 72. Cavaliere G. Background paper: the ethics of human genome editing. WHO Expert Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome Editing. 2019.
- 73. Enoch D. Once you start using slippery slope arguments, you’re on a very slippery slope. Oxford Journal of Legal Studies. 2001;21(4):629-47.
- 74. Spielthenner G. A logical analysis of slippery slope arguments. Health Care Analysis. 2009;18(2):148-63.
- 75. Walton D. The slippery slope argument in the ethical debate on genetic engineering of humans. Science and Engineering Ethics. 2016;23(6):1507-28.
- 76. Callies DE. The slippery slope argument against geoengineering research. Journal of Applied Philosophy. 2019;36(4):675-87.
- 77. Sherkow JS. Controlling CRISPR through law: legal regimes as precautionary principles. The CRISPR Journal. 2019;2(5):299-303.
- 78. Beauchamp TL, Childress JF. Principles of Biomedical Ethics. 7th ed. New York: Oxford University Press; 2013.
- 79. Brokowski C. Do CRISPR germline ethics statements cut it? The CRISPR Journal. 2018;1(2):115-125.
- 80. National Academies of Sciences, Engineering, and Medicine. Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press; 2017.
- 81. Nuffield Council on Bioethics. Genome Editing and Human Reproduction: Social and Ethical Issues. London: Nuffield Council on Bioethics; 2018
- 82. WHO Expert Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome Editing. Human Genome Editing: Recommendations. Geneva: World Health Organization; 2021.
- 83. Goldman AI. Experts: which ones should you trust? Philosophy and Phenomenological Research. 2001;63(1):85-110.
- 84. Critchley C, Nicol D, Bruce G, Walshe J, Treleaven T, Tuch B. Predicting public attitudes toward gene editing of germlines: the impact of moral and hereditary concern in human and animal applications. Frontiers in Genetics. 2018;9:704.
- 85. Gaskell G, Bard I, Allansdottir A, et al. Public views on gene editing and its uses. Nature Biotechnology. 2017;35(11):1021-3.
- 86. Scheufele DA, Xenos MA, Howell EL, Rose KM, Brossard D, Hardy BW. U.S. attitudes on human genome editing. Science. 2017;357(6351):553-4.
- 87. Saha K, Hurlbut JB, Jasanoff S, et al. Building capacity for a global genome editing observatory: institutional design. Trends in Biotechnology. 2018;36(8):741-3.
- 88. Hurlbut JB, Jasanoff S, Saha K, et al. Building capacity for a global genome editing observatory: conceptual challenges. Trends in Biotechnology. 2018;36(7):639-41.
- 89. Durant J. Participatory technology assessment and the democratic model of the public understanding of science. Science and Public Policy. 1999;26(5):313-9.
- 90. Gastil J. Designing public deliberation at the intersection of science and public policy. In: Hall Jamieson K, Kahan DM, Scheufele DA, editors. The Oxford Handbook of the Science of Science Communication; 2017. p. 233-42.
- 91. McCaughey T, Budden DM, Sanfilippo PG, et al. A need for better understanding is the major determinant for public perceptions of human gene editing. Human Gene Therapy. 2019;30(1):36-43.
- 92. Benston S. Everything in moderation, even hype: learning from vaccine controversies to strike a balance with CRISPR. Journal of Medical Ethics. 2017;43(12):819-23.
- 93. Sunstein CR. Laws of Fear: Beyond the Precautionary Principle. Cambridge: Cambridge University Press; 2005.
- 94. Clouser KD, Gert B. A critique of principlism. The Journal of Medicine and Philosophy. 1990;15(2):219-36.
- 95. DeGrazia D. Moving forward in bioethical theory: theories, cases, and specified principlism. The Journal of Medicine and Philosophy. 1992;17(5):511-39.
- 96. Strong C. Specified principlism: What is it, and does it really resolve cases better than casuistry? The Journal of Medicine and Philosophy. 2000;25(3):323-41.