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INSURANCE FRAUD ESTIMATION: 

MORE EVIDENCE FROM THE QUEBEC 

AU TOMOBILE INSURANCE INDUSTRY 

Mi'b1hlM 

by Louis Caron, a.s.a. and 

Georges Dionne, Ph.D. 

Cet article presente une extension d'une etude sur !'evaluation de la fraude a 

!'assurance dans l'industrie de !'assurance automobile du Quebec (Dionne et 

Belhadji, 1996). Les resultats de cette recherche indiquaient que 3 a 6,4% des 

montants des reclamations payees (excluant ceux pour bris de vitre seulement) 

etaient frauduleux, soil un total des reclamations variant entre 28 et 61 millions 

de dollars en 1994-1995. Cette evaluation etait un plancher, car elle etait limitee 

a la fraude observee seulement. Dans cette recherche, nous appliquons une 

methode statistique qui permet d'evaluer la fraude totale dans l'industrie pour la 

meme periode. Nos resultats multiplient par 3,4 le pourcentage de dossiers frau

duleux obtenus dans Dionne et Belhadji, ce qui represente un total de reclama

tions variant de 96,2 a 208,4 millions de dollars en I 994-1995. Notre Meilleur 

Estimateur genere un taux de fraude de 10% ou I 13,5 millions de dollars. Un 

corrolaire interessant de ce resultat est que Jes enqueteurs des entreprises qui ont 

participe a I'enquete (representant 70% du marche) ont observe seulement 113 de 

Ia fraude potentielle dans Jes dossiers fermes etudies. Nous pouvons interpreter 

ce ratio comme un indice d'efficacite du processus de verification de l'industrie. 

Une question naturelle est: Pourquoi cet indice est-ii si faible? 
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This article follows a previous study on insurance fraud in the Quebec automo

bile insurance industry (Dionne and Belhadji, 1996). Results from that research 

showed that 3 to 6.4% of all claim payments ( excluding those for "glass damage 

only") contained fraud, representing 28 to 61 million dollars in 1994-1995. This 

evaluation was a minimum since it was limited to observed fraud only. In this 

paper, we apply a statistical method to estimate the total fraud level in the 

industry for the same period. Our results show a multiplicative factor of 3.4% of 

fraudulent files found in Dionne and Belhadji, which means that total fraud pay

ments ranged from 96.2 to 208.4 million dollars in 1994-1995. Our Best Guess 

Estimator yields roughly a 10% fraud rate or about 113.5 million dollars. An 

interesting corollary in this finding is that the claim adjusters who participated 

to the survey (representing 70% of the market), observed only 1/J of the potential 

frauds in the s111died closed files. One can interpret this number as an index of 

efficiency for the entire verification process in the industry. A natural question 

is: Why is this index of efficiency so low? 

Keywords: Insurance fraud, Quebec automobile insurance industry, observed 

fraud, estimated fraud, hidden phenomenon, claim adjusters, count data 

estimators, robustness. 

• INTRODUCTION

This article follows a previous study on insurance fraud by 
Dionne and Belhadji (1996). It uses the same data bank. Eighteen 
companies have contributed to the survey of this study, representing 
70% of the Quebec automobile insurance market in 1994. Claim 
adjusters randomly reopened 2,509 closed files, or 2,772 coverages, 
to evaluate the significance of insurance fraud. 

Results from this study showed that 3 to 6.4% of all claim pay
ments contained fraud, representing 28 to 61 million dollars in 
1994-1995. This evaluation was a minimum since it was limited to 
observed fraud only. Their definition of fraud included build-up, 
opportunistic fraud and planned fraud (see Weisberg and Derrig 
(1993) for a detailed discussion of different fraud definitions; for 
recent studies on insurance fraud, see the "References" section). 

The objective of this paper is to apply a statistical method to 
estimate the total fraud level in the industry. From the data, investi
gators found 19 established fraud cases out of the 2,772 coverages, 
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and 123 suspected cases with a degree ranging on a scale from 1 to 
10, where 10 means that the case was suspected of having a proba
bility of being fraudulent close to one. 

If one considers that only the coverages with established fraud 
are actually fraudulent, then one obtains a 0.69% fraud level. One 
can also think that the established and the suspected cases are all

fraudulent with a probability equal to one. This observation yields a 
5.1 % fraud level for the 2,772 coverages or 5.4% for the 2,454 
closed files with complete infonnation. In both cases the assump
tions are extreme and are limited to observed fraud. 

Another possibility is to start with the assumption that, when 
fraud is established, these coverages are fraudulent with a probabil
ity equal to one. This yields a 0.69% lower bound for fraud. We can 
also say that suspected coverages are "more likely" to represent 
fraud than the unsuspected ones. In other words, we can assume 
that at least "some" of these other coverages contain some fraud. 

But one may ask: To what extent does the observed fraud 
underestimate the real fraud? Are we seeing the whole picture or 
just the tip of an iceberg? This paper proposes an answer. 

In the following sections the methodology used for the estima
tion process is presented and major problems encountered are dis
cussed. A succeeding section presents some estimation results 
obtained from the data in Dionne and Belhadji (1996), and the last 
section will wrap-up the results and interpret them in tenns of claim 
payments for the industry. The main results are interpreted in the 
concluding section. 

• PROBLEMS AND METHOD

In standard statistical evaluations of a ratio, both the numerator 
and the denominator are perfectly observable. With some subset of 
the population one can get a robust estimator of the seeked 
proportion. 

The major problem when we have to evaluate the significance 
of fraud in a given market, is one of estimation. We cannot find 
easily a proportion of fraud over all coverages because the numera
tor of this proportion is hidden information. In other words, we do 
not know with certainty the value of this numerator even in the 
sample. Consequently, we have to resort to a count data estimator
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of some hidden phenomenon. The major statistical problem associ
ated with these estimators is their lack of robustness. 

Figure I will help to illustrate the problem. Set F represents 
total fraud in the market while sets E and S show respectively the 
established and suspected fraud. Clearly, for "fraud proportion" the 
cardinal of set F is what we are looking for to be our numerator 
over total claims. 

The result given in Dionne and Belhadji for observed fraud (19 
fraud cases or 0.69%) is represented here by the shaded set E. Since 
set E is the Established fraud set, then clearly, it is completely con
tained in the total fraud set F. Set E is in fact a lower bound for set 
F. Established fraud (set E) is known but it is only part of the total
fraud (set F).

We also have a Suspected fraud set (S) with a degree of suspi
cion for each claim in that set. Some of these suspected fraud cases 
are really fraudulent, hence they are part of set F, noted here as "S 
and F". In Dionne and Belhadji (1996), we could see several 
assumptions on the size of "S and F' ranging from O and yielding 
0.69% fraud, to I 00% of set S and yielding 5.1 % fraud. Whatever 
the assumption used, the total fraud set F was only composed of 
Established fraud E plus some part of the Suspected fraud S, with 
the remainder of set F being empty. In other words, Dionne and 

FIGURE I 
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Belhadji (1996) assumed that claims that are neither established nor 
at least suspected fraudulent by claim adjusters are never fraudulent. 

In order to estimate the cardinal of set F we have to use a 
count data estimator. The origins of count data estimators date back 
to Student with Poisson's law, which is well suited for rare occur
rences. The advance in genetic science led Fisher to consider the 
problem with the Negative Binomial law. The Binomial law, for the 
purpose at hand, was first considered by Binet (1954) and had two 
major properties. 

The first property is that this law has an implicit lower bound, 
which is the observed number of success in the data. For example, 
one cannot obtain "100" from a Binomial law with parameters 70 
and p, Bin(70,p), no matter what "p" is. So, if the number of estab
lished fraud cases in some set is 15, we cannot assume with the 
Binomial law to have, say, 10 fraudulent cases in this set. 

The second property is one of intuition regarding the definition 
of "p". If we assume that the number of detected fraud we find in 
any set follows a Bin(n, p), with "n" being the total number of fraud 
cases, then, by definition, "p" will be the conditional probability of 
detecting a fraud, given that the claim is fraudulent. So, if we can 
estimate this "index of efficiency" of claim adjustment staff, we can 
also find, as a by-product, the total number of fraud, which is what 
we are mainly looking for. 

For example, if we find that a claim adjuster will detect a 
fraud, given the claim is fraudulent with a probability of 0.5, then 
according to the Binomial law, since E[X] = np, we should double 
our findings in order to get "n", the total number of fraudulent cases: 
n = E(X)/0.5 where E(X) is the expected number of fraud cases . 

• MODEL

Therefore, our assumption is that the detection process of fraud 
follows a Bin(n,p), with "n" and "p" being the unknown parameters. 
A method to estimate these parameters is the Method of Moments. 

Since there are two parameters in this estimation process, one 
then needs at least two moments, E[X] and Var[X]. Since our 
objective is to compute a variance between each group; consequently 
we need more than one group. For that reason, one has to use a 
stochastic process to put the data into a number of sets S

1
, S

2' 
... , S

K
. 
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There is a trade-off in the choice of the number of sets (K). 
When K is large, the moments are more stable and precise. But as 
K increases, it becomes more difficult to maintain the Binomial 
assumption that each set has the same Bin(n,p). The "p" parameter 
does not change, but the more groups we have, the less elements we 
have in each group and hence, the less we can say that there is the 
same number "n" of total fraud cases in each group. 

We therefore have to choose a K, or repeat the same experi
ment with different values of K, and verify how large the variations 
are between the results for different K's. We will further comment 
on this point in the next section. 

Once we have chosen the number of groups, we can proceed 
with the estimation of the two moments, and then find the estima
tion of the two parameters, "n" and "p", as follows. 

Let us use the notation µand cr2 for the mean and the variance, 
respectively: 

µ= E[X] = np, 
cr2 = V[X] = np(l - p). 

Then, we can easily find that n = µ2/(µ - cr2). 

However, a major problem arises. As we can see, when µ � cr2 

then n � oo. This estimator is not robust, which means that little 
variations in the data will lead to big changes in the estimation. For 
that reason, we have to use a process to stabiliz e the estimation. The 
process used was found and described by Olkin, Petkau and Zidek 
(1981). Their estimator from the method of moments solves: 

Max { cr2'1f2/('lf - 1 ), Xma
x} 

where, 

and, 
z 

= 

= 

= 

• RESULTS

µ/cr2, when µ/cr2 � 1 + l/../2 
max { z/cr2, 1 + :./2}, otherwise 

(X
max - µ)/cr. 

We first present the results of one experiment done with six 
sets of 462 coverages. This experiment represents the average of a 
thousand estimations with the method described above. Each esti-
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TABLE I 
RESULTS WITH SIX SETS ( N = 462 ) 

Occurrence Estimation 

(n) (n/N)% (n) (n/N)% (p) 

E 19 0.6852 10.9449 2.3690 0.2893 

E+(S>9) 38 1.3704 22.1362 4.7914 0.2861 

E+(S>S) 48 1.7310 27.7267 6.0015 0.2885 

E+(S>7) 62 2.2358 35.449 7.6729 0.2915 

E+(S>6) 71 2.5604 41.9 9.0693 0.282 

E+(S>S) 78 2.8128 43.7889 9.4781 0.2969 

E+(S>4) 100 3.6062 56.4136 12.2107 0.2954 

E+(S>3) 108 3.8947 59.4966 12.8781 0.3025 

E+(S>O) 127 4.5799 69.5356 15.0510 0.3044 

E+S 142 5.1208 76.3894 16.5345 0.3098 

mation is not stable, but when we take an average of a hundred or 
so, the results become much more reliable. 

The first column represents the detection assumption, which 
is: "What do we consider as detected fraud?". In terms of figure I, 
"E" represents the entire set E or the Established fraud set. "S" 
stands for the Suspected fraud set or that portion of the set which is 
calculated as fraud detection. Again, in terms of Figure I, S gives 
the part of set S that is included in set F, or the proportion of set (S 
and F) over set S. Therefore, the detected fraud set will be set E 
plus set (S and F). 

For example, "E+(S>4)" means that set (S and F) is composed 
of all the suspected fraud cases that have a suspicion degree higher 
than 4 in the data set of Dionne and Belhadji (1996). That degree of 
suspicion was included in the data bank and was given by claim 
adjusters as a "probability of being fraudulent". Hence, in this 
example, "E+(S>4)" means that for this detection assumption, we 
calculate as detected fraud cases as follows: Set E, entirely, plus all 
suspected cases with a "probability of being fraudulent" equal to 
0.5 and higher. 

The detection assumption ranges from "E", the more 
Optimistic one, found in the first row, where only Established fraud 
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cases are considered as Detected fraud cases, to "E+S", the more 
pessimistic one, under which all cases of either Established or 
Suspected fraud are considered as Detected fraud cases. 

The second and third columns present the results of the claim 
adjusters as taken directly from the data bank, and the percentages 
of fraud proportion. These figures are the observed cardinals of set 
E plus set (S and F). For example, in the first detection assumption, 
only 19 cases in the data bank were Established as fraudulent, 
which yields a 0.69% fraud proportion (19/2,772). These two 
columns show the results presented in Dionne and Belhadji (1996). 

The last three columns present the results from the estimation 
part of this study. The fourth one gives the average "n" estimated 
over a thousand iterations of the process described earlier. In the 
fifth column, we can read the fraud proportion obtained where N = 
462. Finally, the last one presents the estimated conditional proba
bility of detecting fraud, given there is fraud. In other words, if we
give a fraudulent claim to a claim adjuster, then "p" represents the
probability that he will detect it as being fraudulent. This, of course,
is dependent of the detection assumption.

One important thing to note here is that, as we become more 
pessimistic in our detection assumption, "p" increases. This is 
coherent with the intuition that the more we include Suspected 
fraud cases as Detected, the more we effectively detect fraud. So, as 
we increase the number of detected fraud with the suspected frauds, 
the estimated fraud proportion increases, but not linearly so. The 
relation is increasing but concave. 

The percentage of fraud estimated ranges from 2.37% to 
16.53% depending on the "optimism degree" in the assumption. 
This is quite a large bracket but both assumptions are quite extreme. 
The first one assumes that Suspected cases have no more chances 
of being fraudulent, and the latter assumes that all Supected cases 
can be seen as cases where fraud is detected. 

If we want a "realistic" fraud estimation, we may consider the 
Detection assumption to be halfway between the two extremes, 
which is "E+(S>5)". Here we consider as Detected fraud cases , the 
Established cases together with Suspected cases where the degree 
of suspicion, as recorded by the claim adjusters, exceeds five. This 
gives an estimated "n" of 43.79 fraud cases per set, which yields to 
an estimation of roughly 9.5% fraudulent claims. We name this 
assumption the "Best Guess Assumption". 

The conditional probability "p" of detecting fraud given there 
is fraud, under the Best Guess Assumption, was estimated as 0.3. 
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We can compound a multiplicative factor with these results. This 
multiplicative factor is defined by the size of the estimation when 
compared to the observation. In terms of Figure I the multiplicative 
factor is the number of times set E plus set (S and F) enters in the 
total fraud set (F). 

The corresponding multiplicative factor, for the Best Guess 
Assumption, is 3.4. This means that the observed fraud rates, the 
fraud rates given in the study of Dionne and Belhadji (1996), are 
multiplied by 3.4 in this study in order to get the real estimated 
fraud rate in that market. 

As we have said earlier, the number of sets (K) was chosen 
somewhat arbitrarily, with the exception that one had to consider 
the trade-off in so choosing it. Hence, we only know that the num
ber of sets "K" cannot be close to the value of one or "too large". 
So we have repeated the same experiment, with a thousand itera
tions, for different values of "K" (from 5 to 18). In table II we can 
see some of the results for the estimated percentages. 

As we can see, for different numbers of sets, the estimated per
centage of fraudulent claims is quite stable. That is, the estimated 
number of fraudulent claims "n" decreases significantly when we 
increase the number of sets, but this effect is offset by the decreas
ing number of claims in each set. 

TABLE II 
RESULTS FOR (n/N) BY NUMBER OF SETS 

Number of Sets (K) 

Assump. s 6 7 9 II 18 

E 2.2860 2.3690 2.3858 2.5819 2.5501 2.7077 

E+(S>9) 4.5631 4.7914 4.9345 5.1174 4.9756 5.2368 

E+(S>8) 5.7705 6.0015 6.0668 6.4005 6.2785 6.6488 

E+(S>7) 7.2835 7.6729 7.5528 8.0999 8.0044 8.5361 

E+(S>6) 8.3811 9.0693 9.2734 9.1558 9.1621 9.7969 

E+(S>S) 9.2065 9.4781 9.8199 9.9097 10.060 10.762 

E+(S>4) 11.724 12.211 12.128 12.494 12.847 13.639 

E+(S>J) 12.314 12.878 13.148 13.413 13.966 14.709 

E+(S>O) 14.883 15.051 15.608 15.692 16.349 17.222 

E+S 16.563 16.535 17.721 17.618 18.014 19.012 
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For the Best Guess Assumption "E+(S>5)", the variation in 
the estimated percentage ranges from 9.2% to 10.8%, which gives 
us a I 0±0.8% interval where we can find the estimated fraud per
centage under this assumption. 

• NEW MONETARY ESTIMATES FOR QUEBEC

AUTOMOBILE INSURANCE INDUSTRY

In this section, we first use the Pessimistic Assumption that 
sets the degree of suspected fraud at I 00%, which means that the 
total claim payments by the industry for these suspected cases rep
resent detected fraud. We also assume that the multiplicative factor 
(3.4), obtained from our Best Guess Assumption for the 2,772 cov
erages, applies to the 2,454 claims for which information on claim 
payments is available. 

Under these assumptions, the total number of fraudulent 
claims represent 18.4% (5.4% x 3.4) of total claims and 21.8% 
(6 .4% x 3.4) of  total claim payments, (which amounts to 
957,902,484 million dollars in 1994-1995 when excluding "glass 
damages only"). This yields 208.4 million dollars compared to the 
61.3 million obtained in Dionne and Belhadji (1996). 

If we now apply the residual monetary amounts for fraud pay
ments obtained from the questionnaire (Realist Assumption #I in 
Dionne and Belhadji's study), the residual fraud is equal to 96.2 
million instead of 28.3 million or 10% instead of 3% of total claim 
payments. 

Finally, if we restrict the percentage of fraud cases to that of 
our Best Guess Assumption (E + (S+5)) which means that the fraud 
rate is I 0%, but apply the monetary amounts of the Pessimistic 
Assumption, we obtain that fraud payments represent 11.85% of 
total claim payments or 113.5 million dollars of 957,902,484 mil
lion dollars. 

• CONCLUSION

Our Best Guess Estimator roughly yields a I 0% fraud rate, and 
this result is found to be quite stable. However, the fraud rate is 
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found to have a 16.5% upper bound. The findings in Dionne
Belhadji (1996) are multiplied by 3.4, which were given as a floor 
estimate, or observed fraud rates. In monetary values, this means 
that total fraud payments by the industry in 1994-1995, ranged from 
96.2 to 208.4 million dollars instead of 28.4 to 61.3 million dollars. 
In other words, our results indicate that 10 to 21.8% of all claim 
payments are fraudulent instead of 3 to 6.4%. 

An interesting corollary of the present study is the finding of 
"p" is equal to roughly 1/3. Again "p" is the conditional probability 
for claim adjustment staff to detect fraud, given the claim is fraudu
lent. This can be seen as a significantly low index of efficiency for 
the entire verification process. An important question therefore 
arises: Why is this index of efficiency so low? 

There are countless answers to that question: 1. It can reflect 
the incompetence of claim adjustment staff to efficiently identify 
fraud cases. They may not have the adequate experience or training 
to detect fraud, which in fact is not necessarily their main preoccu
pation. 2. It can yield serious doubts about the relevance of fraud 
indicators used to flag possible fraud cases. 3. It may be related to 
the low quality or quantity of investigations. 4. The results can also 
reflect an induced laxity by insurers because of the low anticipated 
benefits of fighting fraud. Choosing the right answer cannot be 
made without a proper study of the real incentives of each partici
pant in the market to fight against fraud. 

In Dionne and Belhadji's study, they found that a large propor
tion of the fraud cases (93%) were not prosecuted. The main reason 
for nonprosecution was found to be due to "insufficient proof' 
(59% ). This high percentage of unprosecuted claims for that partic
ular reason naturally triggers a question. Why was the investigation 
not pushed further? 

A possible answer may reside in the fact that many of these 
claims represent low monetary values. If the claim amount is too 
small to justify the costs of further investigations, then maybe 
higher deductibles are in order. Higher deductibles would raise 
claim levels to the point where investigations could be worth pursu
ing for the insurers. However, higher deductibles may also increase 
the benefits of build-up by insureds. 

Investigations and prosecutions have also been seen as bad 
publicity for the investigating and prosecuting firms. The fraud 
problem is not only a problem of robbery but endangers the very 
principle of insurance. The question remains with the industry. As 
researchers, we will focus our attention on finding some statistical 

Insurance Fraud Estimation 577 



578 

and management tools in order to isolate the main causes and 
impose the claims-premiums ratio in that market. 
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