Résumés
Résumé
L’objectif de cet article est de déterminer la prime pure à payer par l’agriculteur sénégalais assuré à des risques classiques. L’utilisation du modèle linéaire général (GLM) a permis de déterminer la fréquence et la sévérité en fonction des différents types de risques auxquels sont exposés les agriculteurs. Nous avons montré que le nombre de sinistres suit une loi zéro-inflation binomial négative et le coût une distribution log-normal. Nous avons aussi montré que les risques sanitaires, les invasions acridiennes (criquets pèlerins), d’animaux et de canards et d’oiseaux sauvages, la présence de nématodes et de pourriture de collet sont les risques auxquels l’agriculture est exposée. Le modèle estime une prime plus élevée que la prime observée pour les animaux sauvages, les maladies, les oiseaux granivores et les oiseaux sauvages. En revanche, la prime calculée est inférieure à celle observée pour les canards sauvages et les criquets pèlerins. La différence entre la prime observée et celle calculée s’explique par le fait que le premier est évalué à partir de la valeur du capital assuré et non du risque auquel l’agriculteur est exposé. Pour une meilleure tarification, la compagnie d’assurance devra tenir compte du type de risque auquel chaque assuré est le plus exposé et déterminer la prime correspondante. Cette segmentation permettra de déterminer la prime adéquate.
Mots-clés :
- Risque,
- prime,
- sinistre,
- tarification
Abstract
The objective of this article is to determine the pure premium to be paid by the Senegalese farmer insured for conventional risks. The use of the general linear model (GLM) has made it possible to determine the frequency and severity according to the different types of risks to which farmers are exposed. We have shown that the number of claims follows a negative binomial zero-inflation law and the cost of a log-normal distribution. We have also shown that health risks, locust (locust), animal and duck invasions and wild birds, the presence of nematodes and crown rot are the risks to which agriculture is exposed. The model estimates a higher premium than the premium observed for wild animals, diseases, grain-eating birds and wild birds. On the other hand, the premium calculated is lower than that observed for wild ducks and locusts. The difference between the premium observed and that calculated is explained by the fact that the former is assessed on the basis of the value of the capital insured and not of the risk to which the farmer is exposed. For better pricing, the insurance company should take into account the type of risk to which each insured is most exposed and determine the corresponding premium. This segmentation will determine the appropriate premium.
Keywords:
- Risk,
- premium,
- loss,
- pricing
Parties annexes
Bibliographie
- [1]. Adisak P, Sukuman S. Thiradet J. (2010). Mathematical modelling for the estimation of crop insurance premium : a case study of total premium equal damage compensation. King Mongkut’s University of Technology Thonburi.
- [2]. Alba C. V., Antonio S., Inés M., Alberto G..(2017). Crop insurance demand in wheat production : focusing on yield gaps and asymmetric information. Spanish Journal of Agriculture research Vol 15, No 4.
- [3]. Aranee T. (2011).The Impact of Culture on Non-Life Insurance Consumption. University of Pennsylvania.
- [4]. Babcock, B.A. and D.A. Hennessy.(1996). Input Demand under Yield and Revenue Insurance. American Journal of Agricultural Economics 78(2) : 416-427.
- [5]. Borge J., Anne S., Anders. (2011). Livestock as Insurance and Social Status : Evidence from Reindeer Herding in Norway. Environmental and Resource Economics. vol. 48 (4).
- [6]. Bühlmann H.(1969). Experience rating and credibility. ASTIN-Bulletin, 5 (1969), pp. 157-165.
- [7]. Cameron AC, Trivedi PK (1998). Regression Analysis of Count Data. Cambridge University Press, Cambridge.
- [8]. Chizari M, Ahmad Y., Lindner J .(2010). Perceptions of Rural Livestock Insurance among Livestock Producers and Insurance Specialists in Isfahan Province, Iran. Journal of International Agricultural and Extension Education – Vol, 10(1), 37-42.
- [9]. Claassen R., Carriazo F., Cooper J.C., Hellerstein D., Ueda K..(2011). Grassland to Cropland Conversion in the Northern Plains : The Role of Crop Insurance, Commodity, and Disaster Programs. USDA, Economic Research Service, Economic Research Report 120, June. Available online at : www.ers.usda.gov/publications/err120/.
- [10]. Fazelbeigi M., Yavari, G.R. (2010). An analysis of challenges faced by crop insurance fund in Iran, Rural Areas & Development. 13 (1) : 21-41.
- [11]. Gideon A., Kwabena N. A. ; Dennis E..(2014). Willingness to Pay for Farm Insurance by Smallholder Cocoa Farmers in Ghana . Journal of Social Science for Policy Implications , Vol. 2, No. 1, pp. 163-183.
- [12]. Heckman J. (1979). Sample Selection Bias as a Specification Error Econometrica, vol. 47, issue 1, 153-61
- [13]. Horowitz, J.K., Lichtenberg E.(1993). Insurance, Moral Hazard, and Chemical Use in Agriculture. American Journal of Agricultural Economics 75(4) : 926-935.
- [14]. Lambert D (1992). \Zero-inated Poisson Regression, With an Application to Defects in Manufacturing. » Technometrics, 34, 1-14.
- [15]. McCullagh P, Nelder JA (1989). Generalized Linear Models. 2nd edition. Chapman & Hall, London.
- [16]. Miao R.,Feng H., Hennessy D.A.(2011). Land Use Consequences of Crop Insurance Subsidies. Paper Presented at the Annual Meeting of the Agricultural and Applied Economics Association, Pittsburgh, PA, July 24-26.
- [17]. Miranda Mario J.(1991). Area-Yield Crop Insurance Reconsidered American Journal of Agricultural Economics, Vol. 73, No. 2. pp. 233-242.
- [18]. Mullahy J (1986). Specification and Testing of Some Modifed Count Data Models. » Journal of Econometrics, 33, 341,365.
- [19]. Nelder JA, Wedderburn RWM (1972). « Generalized Linear Models. » Journal of the Royal Statistical Society A, 135, 370{384.
- [20]. Nwosu F. O., Oguoma N. N., Lemchi O., J. I., Ben–Chendo G. O., Henri-Ukoha A., Onyeagocha S. U. O., Ibeawuchi, I. I. (2012). Output Performance Of Food-Crop Farmers Under The Nigerian Agricultural Insurance Scheme In Imo State, South East, Nigeria. Academia Arena, 2(6) : 43-47.
- [21]. Sommarat C., Mude A. G, Barrett, C. B., Turvey C. G.(2009).The Performance of Index Based Livestock Insurance : Ex Ante Assessment in the Presence of a Poverty Trap.
- [22]. Sommarat C., Andrew G. Mude, Christopher B., Michael R.C.(2013).Designing Index Based Livestock Insurance for Managing Asset Risk in Northern Kenya. Journal of Risk and Insurance, vol. 80, issue 1, pp. 205–237.
- [23]. Smith, V.H., Goodwin B.K.(1996). Crop Insurance, Moral Hazard, and Agricultural Chemical Use. American Journal of Agricultural Economics 78(2) : 428-438, May
- [24]. Wenner M., Diego A. (2003). Agricultural Insurance in Latin America : Where Are We ? Inter American Development Bank
- [25]. Williams .J, Gordon L. Carriker, G. Art Barnaby and Jayson K. Harper.(1993). Crop Insurance and Disaster Assistance Designs for Wheat and Grain Sorghum. American Journal of Agricultural Economics, vol. 75, issue 2, 435-447.
- [26]. Zelda A.E., Godwell N., Michael A. A. (2018). Effects of climate variability and insurance adoption on crop production in select provinces of South Africa. Journal of Water and Climate Change. Vol 9, Issue 3.