Résumés
Résumé
L’assurance indicielle, considérée dès son introduction dans les pays en développement comme un puissant outil de stabilisation des revenus des paysans et de réduction de la pauvreté, a très vite désenchanté ses promoteurs. L’évolution de la demande de cette assurance est particulièrement décevante dans la majeure partie des pays qui l’ont expérimenté. Au Burkina Faso, on constate une forte baisse des adhésions et partant des superficies et des sommes assurées. La principale raison évoquée par les producteurs est l’absence d’indemnisations ou le très faible niveau d’indemnisation en cas de perte de production (risque de base). La présente étude propose l’utilisation des techniques de classification floue qui autorise l’appartenance partielle à des classes à indemniser pour réduire le risque de base et augmenter l’attractivité de l’assurance indicielle au sein des producteurs de coton au Burkina Faso. Nous avons montré que l’application de la technique de classification floue augmente significativement la probabilité d’être indemnisé (de plus de trois fois par rapport à son niveau actuel) mais aussi la prime de l’assurance. Toutefois selon Elabed et Carter (2014a), les producteurs seraient prêts à payer des sommes substantielles pour atténuer ou éliminer totalement le risque de base.
Mots-clés :
- assurance indicielle,
- théorie des ensembles flous,
- classification floue,
- classification dure (classique),
- fuzzyfication
Abstract
Index insurance, considered as a powerful tool for stabilizing farmers’ incomes and reducing poverty at its introducing in developing countries, soon disenchanted its promoters. The evolution of demand for this insurance is particularly disappointing in most of the countries that have implemented it. In Burkina Faso, there has been a sharp decline in adhesion and hence in amounts insured. The main reason given by the producers is the lack of payment or the very low level of insurance payout in case of loss of production (basic risk). This study proposes the use of fuzzy classification techniques that allow partial membership of classes to be eligible for a payment to reduce the basic risk and increase the attractiveness of index insurance among cotton producers in Burkina Faso. We have shown that the application of the fuzzy classification technique significantly increases the probability of being compensated (more than three times compared to its current level) but also the premium of the insurance. However, according to Elabed and Carter (2014a), producers would be willing to pay substantial sums to mitigate or completely eliminate the basic risk.
Keywords:
- index insurance,
- fuzzy set theory,
- fuzzy classification,
- crisp classification (classical),
- fuzzyfication
Parties annexes
Bibliographie
- [1]. Banque Mondiale (2015) Rapport sur le développement dans le monde : Nourrir l’Afrique de l’Ouest : Un agenda pour le commerce régional, Washington D.C. : Banque mondiale.
- [2]. Barré, T., Q. Stoeffler, and M. Carter (2016). Assessing index insurance : conceptual approach and empirical illustration from Burkina Faso.
- [3]. Barron J, Rockström J, Gichuki F, Hatibu N (2003) Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agric For Meteorol 117 : 23-37
- [4]. Bezdek, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, New York, Plenum Press.
- [5]. Carter M., de Janvry A., Sadoulet E. Sarris A. (2015), « Assurance climatique indicielle pour les pays en développement : examen des faits et propositions visant à augmenter le taux de souscription », Revue d’économie du développement (Vol. 23), p. 5-57. DOI 10.3917/edd.291.0005
- [6]. Chen, G, Lu.S and Yu, E (1980) Application of Fuzzy Set Theory to Economics In Advances in Fuzzy Set, Possibility Theory and Applications, (cd P. Wang) pp 227-305, Plenum Press, New York.
- [7]. Clarke, D. (2011a). « A theory of rational demand for index insurance », Série Documents de travail 572, département d’économie, Université d’Oxford
- [8]. Cummins, J.D., and Derrig, R.A. (1991), Fuzzy Financial Pricing of Property-Liability Insurance, working paper.
- [9]. Cummins, J.D., and Derrig, R.A. (1993), Fuzzy Trends in Property-Liability Insurance Claim Costs, Journal of Risk ana’ Insurance, forthcoming.
- [10]. Derrig RA, Ostaszewski KM (1999) Fuzzy sets methodologies in actuarial science. In : Zimmerman HJ (ed) Practical applications of fuzzy technologies. Kluwer Academic Publishers, Boston
- [11]. DeWit, G.W. (1982), Underwriting andUncertainty, Insurance : Mathematics and Economics, 1 : 277-285.
- [12]. Ebanks B, Kanvowski W, Ostaszewski KM (1992) Application of measures of fuzziness to risk classification in insurance. In : Proceedings of the fourth international conference on computing and information : computing and information. IEEE Computer Society Press, Los Alamitos, California.
- [13]. Elabed, G. et M. Carter (2014a). « Basis Risk and Compound-risk Aversion : Evidence from a WTP Experiment in Mali », Université de Californie à Davis
- [14]. Elabed, G., M. F. Bellemare, M. Carter, and C. Guirkinger (2013). Managing basis risk with multiscale index insurance. Agricultural Economics, 44(4-5) : 419-431.
- [15]. Elabed, G.and M. Carter (2014). Ambiguity, compound-risk aversion and the demand for microinsurance. Technical report, University of California, Davis.
- [16]. Elabed, G.and M. Michael (2015) Ex-ante impacts of agricultural insurance : Evidence from a field experiment in mali.
- [17]. Erbach DW, Seah E (1993) Discussion of “The Application of Fuzzy Sets to Group Health Underwriting” by Young VR. Transactions of the Society of Actuaries 45 : 585
- [18]. Graef F, Haigis J (2001) Spatial and temporal rainfall variability in the Sahel and its effects on farmers’ management strategies. J Arid Environ 48 : 221-231
- [19]. Kandel, A. (1982), Fuzzy Techniques in Pattern Recognition, John Wiley and Sons, New York.
- [20]. Lemiare, J. (1990), Fuzzy Insurance, Astin Bulletin, 20 : 33-55.
- [21]. M. Mukaidono (2001). Fuzzy Logic for Beginners. World Scientific Publishing, London.
- [22]. Carter,M., G. Elabed, and E. Serfilippi (2015). Behavioral economic insights on index insurance design. Agricultural Finance Review, 75(1) : 8-18.
- [23]. Ostaszewski K, Karwowski W (1992) An analysis of possible applications of fuzzy set theory to the actuarial credibility theory. In : Proceeding of the annual meeting of the North American fuzzy information processing society, Puerto Vallaria
- [24]. Ostaszewski, K. (1993), An Investigation into Possible Applications of Fury Sets Methods in Actuarial Science, Society of Actuaries, Schaumburg, Illinois.
- [25]. OXFAM (2016), Rapport Etude d’impact assurance agricole, Rapport définitif mars 2016, Burkina Faso
- [26]. Planet Guarantee (2017), micro assurance en Afrique de l’Ouest expérience du Burkina, Planet Finance Group.
- [27]. Skees, J. (2008). « Innovations in Index Insurance for the Poor in Lower Income Countries », Agricultural and Resource Economics Review 37 : 1-15.
- [28]. Verrall RJ, Yakoubov YH (1999) A fuzzy approach to grouping by policyholder age in general insurance. Journal of Actuarial Practice 7 : 181-203
- [29]. Vischel T, T. Lebel (2007) Assessing the water balance in the Sahel : impact of small scale rainfall variability on runoff. Part 2 : idealized modeling of runoff sensitivity. J Hydrol 333 : 340-355
- [30]. Young VR (1993) The application of fuzzy sets to group health underwriting. Transactions of the Society of Actuaries 45 : 551-590
- [31]. Zadeh L.A (1981) Fuzzy systems theory : a framework for the analysis of humanistic systems. In : Cavallo RE (ed) Recent developments in systems methodology in social science research. Kluwer, Boston : 25-41
- [32]. Zadeh, L.A. (1965), Fuzzy Sets, Information and Control, 8 : 338-353
- [33]. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, Vol. 8, pp. 338-353.
- [34]. Zadeh. L.A. (1978) Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1 : 3-28.
- [35]. Zimmernuum, H.J. (1991), Fuzzy Set Theory and its Applications, Second Edition, Kluwer Academic Publishers, Boston, Massachusetts.