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Reviewed by
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Recently, we have been fortunate to see the start of a new research project,
Mathematical Sciences in the Ancient World (the SAW Project), and the
publication of a new book series, Why the Sciences of the Ancient World
Matter. The SAW Project was funded by an advanced research grant from the
European Research Council from 2011 to 2016, which had Karine Chemla as
the principal investigator, together with Christine Proust and Agathe Keller,
all researchers in the history of ancient mathematics of, respectively, China,
Mesopotamia, and South Asia. The book series started in 2018 and it has
been one of the most important vehicles to make public the extraordinary
amount of material produced by the research project.
The book under review is volume 5 of the series, but it must be said that
volume 6 of the series has already been published: Cultures of Computation
and Quantification in the Ancient World [Chemla, Keller, and Proust 2022].
This is important to mention for at least two reasons. First, in full disclosure,
I am one of the contributors to volume 6 [Gonçalves 2022], although I did
not participate in the conception or production of either volume. Second,
because volumes 5 and 6 are, so to speak, siblings, both of them having
resulted from the endeavors of phase 1 of the SAW Project, which was
“focused on documents related to administrative and economic activities”
[ERC/SAW Project Final Report Summary] in its approach to the general
issue of the variations of mathematical cultures, not only chronologically
and geographically but also in accordance with the milieu in which they
existed [ERC/SAW Project Fact Sheet].

∗ Carlos Gonçalves is an associate professor at the University of São Paulo, Brazil,
a coordinator of the Laboratory of the Ancient Near East at the same university, and
a foreign associate researcher at the SPHERE Laboratoire in Paris, France. He is the
author of Mathematical Tablets from Tell Harmal (Springer, 2015).
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2 Carlos Gonçalves

As a first approximation, the book is an inquiry into the relations between
mathematics as registered in strictly mathematical texts and mathematics as
present in sources belonging to economic and administrative practices. Its
historical scope is mainly early imperial China (2 chapters), early classical
India (2 chapters), and ancient Mesopotamia (7 chapters). One additional
chapter deals with medieval Europe. These chapters are preceded by a
comprehensive and engaging introduction, “Mathematics, Administrative
and Economic Activities in Ancient Worlds: An Introduction”, by Chemla
and Michel, the editors [1–48].
The book is divided into four parts:

(1) Mathematical Writings, Regulations, Laws and Norms [chs 2–4];
(2) Quantifying Spatial Extension, Quantifying Work [chs 5–7];
(3) Quantifying Land and Surfaces [chs 8–9]; and
(4) Prices, Rates, Loans and Interests [chs 10–13].

The organization of the book, therefore, follows neither a geographical logic
nor a chronological one but a logic given by the sources, their purposes, and
the social milieux that created them. Consequently, each part has chapters
dealing with more than one of the main geographical areas of interest
in the book, which gives the reader a rare and rewarding opportunity for
comparison.
There are also three appendices, followed by detailed bibliographic refer
ences, each containing the conventions used to represent numbers and
metrological systems of cuneiform texts, texts from early imperial China, and
texts in Sanskrit, as well as other Indic languages. These conventions are fol
lowed in the present review, where units of measurement are unavoidable.
One additional appendix comprises two maps of Mesopotamia: one in the
Ur III period (the setting for ch. 5 and, partially, ch. 6) and the other in the
old Babylonian period (the setting for chs 2 and 11). There are no maps,
however, for the other periods of the Mesopotamian history touched on
in chs 8–9 for the early dynastic period, ch. 10 for the old Assyrian period,
or in the chapters dealing with China or South Asia.
The volume closes with a detailed index, thus providing the reader with
a practical way of assessing, for instance, how recurrent certain topics such
as estimation, exactness, merchant, price, rounding, and tax are treated
throughout the book.
Before going into the details of the parts and chapters, it is worthwhile to
take a closer look at the introduction, but before doing this I should explain
three features of this review.
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First, Mathematics, Administrative and Economic Activities in Ancient Worlds
is a dense work, and, while I have tried to convey as much of it as possible,
I could only provide a glimpse of what each chapter contains.
Second, in that I am a researcher in the history of cuneiform mathematics, I
have tended to articulate in more depth the arguments involving the seven
chapters of the book that deal with Mesopotamia. If, despite my efforts, I
have left aside important points in the chapters on China and South Asia,
and in the final chapter on coins and coinage in medieval Europe, this should
be considered as no more than a token of my own limitations. Having said
that, I should also add that I learned a lot by reading, summarizing, and
commenting on these chapters and now feel much more knowledgeable
of the history of ancient mathematics. This admission also encapsulates
my realization of the importance of getting oneself out of the comfort zone
of their specialty. This is one of the beneficial effects that the book will have
on most readers.
Finally, the introduction itself draws new conclusions about the specific
topics of each chapter, and it does this in part after summarizing what is
presented in each chapter. My remarks on the introduction and my sum
maries of the chapters likewise involve some repetition, which I have tried
to keep to a minimum but could not avoid altogether.

1. The introduction
The book’s introduction, besides presenting each of its parts and chapters,
also discusses problems, objects, and approaches in the research on the
history of mathematics. This is done in several ways.
First, the introduction reflects on the nature of the sources. The sources
for the research reported in the chapters are mainly textual. Exceptions are
standards of measure, such as Shang Yang’s cuboidal sheng measure; Wang
Mang’s cylindrical hu measure; and the weights, balances, and possible rods
and ropes for surveyors’ work. Finally, in Martin Sauvage’s contribution
to the volume [ch. 6], in addition to texts, bricks and construction works
serve as “documents” for research.
Second, Michel and Chemla also draw the readers’ attention to the dif
ferent ways in which these sources came down to us: the sources from
Mesopotamia were obtained by excavation, either illicit of legal; the sources
from India were primarily handed down through a written tradition; and
the sources from China have come down to us in both ways, through ar
chaeological excavation and written tradition [6]. This is further refined
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by considering among the sources which came from practice, which from
official texts, and which from a scholarly environment. Table 1 [p. 6 below]
summarizes the discussion.
As already indicated, the book also has a chapter on the mathematics related
to the coins and coinage of 15thcentury France [ch. 13]. It draws on John
of Murs’ treatise on coins, De monetis, as well as on manuscripts used by
moneyers, money changers, mint warders, and mint masters.
Third, the introduction develops what could be called the “methodological
guidelines” used in the research represented in the chapters. More precisely,
to facilitate study of the relationship between more strictly mathematical
practices and the mathematics of administrative and economic milieux, the
editors develop a heuristic framework:

We will see that some of our more strictly mathematical sources adhere to
administrative and economic activities to such an extent that they help us
interpret some key practices in these contexts. In another respect, in cases
where we are able to identify contexts in which mathematical knowledge and
practices show differences, how can we approach whether and how knowledge
circulated across different milieux? These questions define a general program to
which this book offers a contribution. We hope that these forays will encourage
other colleagues to look further into these issues. [4]

Finally, Michel and Chemla deal with various types of tasks, the actors,
and the contexts in which the sources drawn on in the various chapters
originated [15–16]. They begin by establishing a largescale bifurcation
of actors and associated tasks into state administration and the activity of
merchants. State administration itself is further split into the computation
of payments, taxes, salaries and wages, planning of work, and measurement
of areas. The activities of merchants include computing prices, lending,
and, in the case of medieval Europe, coinage and management of coins.
Table 2 [p. 9 below] summarizes this. Also, in the administration of state,
regulations played an important role, so they appear frequently throughout
the volume [16].
The central goal of each chapter, as Michel and Chemla propose, is to analyze
its chosen sources from the region of the world on which it concentrates in
order to characterize how historical actors approached quantification and
computation as a body of practices constituting a “culture of computation”.
Within the same historiographical unit, it will become clear that in some
instances, administrative and economic texts will evidence a culture of
computation more closely related to that of the more strictly mathematical
texts; whereas in other instances, there will be discontinuities.
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One could also describe the main aim of the volume as a quest to understand
different cultures of computation and quantification, that is, different math
ematical cultures. This preoccupation with mathematical cultures is one
that can be traced in the several publications by Chemla. As acknowledged
on the first page of the introduction, albeit in a footnote, this volume, as well
as the next in its series [Chemla, Keller, and Proust 2022], was born from a
“threemonth workshop on ‘cultures of computation and quantification’
and its final conference” [SAW 2023]. The footnote on the first page of the
introduction also explains that the “definition and founding principles of
this collective research” are set out in previous publications by Chemla
[2007, 2009, and 2010] as well as in the introduction to Chemla, Keller, and
Proust 2022. One could also cite the article in which Chemla explains that
“by the expression ‘mathematical cultures’, I refer to ways of doing math
ematics that are collectively shared” [Chemla 2016, 1], but by no means
does this suggest that a mathematical culture represents or corresponds to a
“people” or “nation”. Instead, the “collectives to which these shared practices
of mathematics testify need to be established on the basis of evidence, and
not assumed a priori” [Chemla 2016, 2].
In Mathematics, Administrative and Economic Activities in Ancient Worlds,
the readership will often be confronted with the different ways of doing
mathematics that gained life in the past. It is for this reason that comparing
calculation and quantification in administrative and economic activities
with more strictly mathematical texts was chosen as a starting point. This
is a situation that potentially brings evidence of difference between cultures
of computation and calculation, as well as similarities.
Whatever the relation between these cultures of computation and quantifi
cation, the analytical processes of the sources allow us to learn much more
about each of them and “especially [to] bring their diversity to light” [4]. In
order to do that, or perhaps because of doing that, the chapters, as the editors
state, “provide a better understanding of the role [that] mathematical knowl
edge and practices have played in allowing various types of practitioners
to carry out managerial and economic activities in the ancient world” [4].
In my view, the chapters comprising this collection offer a highly original
and valuable insight into questions that have become central to the history
of ancient mathematics.
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Excavations
Written

Tradition
Sources

from Practice
Official

or Display Texts
Mathematical

Sources

Ch. 2 Administrative
texts

Royal inscrip-
tions and
collections of laws

Catalog texts

3 Arthaśāstra
of Kauṭilya

4 The Juyan
administrative
documents

Bamboo slips from
Qin tomb 11 at
Shuihudi, sealed in
ca 217 bc; Han
tomb 247 at
Zhangjiashan,
sealed in ca 186 bc

• Writings on
Mathematical
Procedures (Suan-
shu shu), found in
Han tomb 247
in official excava-
tions
• Mathematics
(Shu) (terminus
ante quem in 212
bc) from the anti-
quities market

• The Nine Chapters
on Mathematical
Procedures (Jiu
zhang shuanshu),
first century ad
• Monographs in
The History of the
[former] Han
[dynasty] (Han
shu) and commen-
taries on them
handed
down with them

5 Administrative
documents from
irrigation projects

6 Administrative
texts containing
work norms

Catalog texts
dealing with bricks
and work norms

7 see ch. 4 see ch. 4 see ch. 4 • see ch. 4
• monographs in
the History of the
Sui
(Dynasty) (Sui shu)

8 Survey texts

9 Lists of area
computation in
tabular
or linear format

10 Merchants’ letters School texts

Table 1. Summary of how
sources have come down to us

Administrative texts mentioned in this table also include those
concerning economic matters



Carlos Gonçalves on Mathematics in Ancient Worlds 7

Excavations
Written

Tradition
Sources

from Practice
Official

or Display Texts
Mathematical

Sources

Ch. 11 Administrative
official texts

Numerical texts,
metrological tables

12 • Arthaśāstra
of Kauṭilya
• Legal sources
(uncertain date)
from the beginning
of the Common Era
and the sixth
century •
Models of admin-
istrative and
business letters
compiled in the
Lekhapaddhati
(which documents
the court of the
Caulukya kings)
from the middle of
the 10th century to
the early 14th
• Mathematical
writings: Āryab-
haṭīya (ad 499),
the Brāhmasphu-
ṭasiddhānta (628)
and the Mahāsid-
dhānta (second half
of the 10th
century); whereas
others writings,
such as
the Gaṇitasārasaṃ-
graha, the Pāṭīga-
ṇita (ninth cen-
tury), the Līlāvatī
(12th century),
and the Gaṇitakau-
mudī (1356), are
devoted to mathe-
matics

Table 1. Summary of how
sources have come down to us

Administrative texts mentioned in this table also include those
concerning economic matters
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First is the “disunity” [21, 22, 44] of the mathematics (seen as either theory or
practice or as a blurred mix of the two) in each of the historiographical units
investigated: China, India, and Mesopotamia. This disunity, or heterogeneity,
of mathematics is an idea of deep impact on how one thinks of mathematical
knowledge and practice. It comes, as the book widely exemplifies, from the
variability of approaches in communities of practice within each selected
historical unit. As Michel and Chemla suggest, each milieu corresponding
to a community of practice must have had its own kind of relationship
to the more strictly mathematical texts usually associated with teaching
environments or the environments in which mathematics was practiced for
its own sake [3]. A practical consequence for the book was the need to focus
on sources that can bring out these differences clearly [4]. All chapters taken
together, the book clarifies how mathematical contents are shaped in each
specific milieu and then circulate, as they are reshaped and reorganized
according to the needs and values of each milieu in which they become
a practice [44]. Finally, the case studies in the book allow one to see the
“disunity of mathematics” and “invite…us to rethink key operations like
quantification and computation” [44].
Second, although less emphasized by Michel and Chemla, the research
published in this book demonstrates how the sources that have come down
to us can be seen to evidence not only the relations between mathemat
ics and the different spheres of life in a society—as if these were actually
separable entities—but also the very constitutive role of mathematical
knowledge and practices in a society. This seems to be in line with the state
ment by Michel and Chemla that “mathematical knowledge and practice
played an important role for the ruling houses” [3]. Also, this seems to
accord with Peng’s view that “measurement values and numbers defined
and brought together the social and administrative hierarchy” [125]. The
phenomenon resurfaces in other passages of the book, for instance, in Mark
McClish’s analysis of how fines for erroneous weights and measures were
determined, where a major role was attributed more to certain “relations
between denominated measuring instruments than [to] computation” [112],
thus implying that these relations silently shaped and became integral to
the final determination procedures.
Both the disunity of mathematics and its constitutive role in society have
been in the scope of historians of mathematics for a while, as I pointed out
in Gonçalves 2020, but the book under review represents a new and invalu
able largescale, collective, and systematic endeavor in these directions.
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State Administration
Computation of payments, taxes, salaries, and wages

Ch. 3 General management of the state, noting that the Arthaśāstra was
not connected to any specific context; overlap with merchants,
especially in moneylending

4 Computation of wages of officials and taxes on land

7 Measurement of grain for computation of salaries of officials
and state taxes

Planning of work and related tasks

5 Computation of volume (as spatial extension) and workload
in irrigation projects

6 Computation of workloads involving brick in construction works

Measurement of areas

8 Land surveying and land recording

9 More scholarly scribal tradition

Merchants
Computing prices

10 Assyrian merchants, computing prices through conversion of values

11 Focus on an overseer of merchants computing prices; overlap
with state administration

Lending

12 Moneylenders

Management of coins

13 Money changers, mint wardens, minters, management of the
production of coins

Table 2. Summary of milieux treated

The remainder of the introduction comments on the four sections of the
book, with special attention to the metahistoriographical question on the
relationship of administrative and economic sources with the more strictly
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mathematical ones. More precisely, when do they and when do they not
coincide? If they seem to indicate similar cultures of computation and
quantification, can one determine whether practitioners had scholarly
training? Or was it the contrary, with the scholarly texts reflecting, imitating,
and being shaped by managerial and economic practices. Yet, to do that
the introduction often builds on the then unpublished chapters of the now
published volume 6 of the series.

1.1 An overview of the volume

Part 1 “confirms, if it were needed, that there was no uniformity of mathemat
ical practice across a society” [19], but the cases of China and Mesopotamia
show some continuity between the mathematics of practice and the mathe
matics of strictly mathematical texts. Chapter 2, by Michel, Robert Middeke
Conlin, and Proust shows that the use of numerical values in school texts
was similar to the use in administrative texts but different from what is
found in official and the socalled display texts, that is to say, inscriptions
that were made for the public eye. Chapter 3, by McClish, by comparing the
Arthaśāstra and the extant mathematical writings in Sanskrit, demonstrates
that there was discrepancy in the “terms referring to computation and quan
tification” and how fractions were used in the expression of measurements
[21]. Chapter 4, by Peng Hao, shows that mathematical manuscripts from
excavations exhibit notable consistency with legal texts in respect to the
mathematics necessary to implement the prescribed regulations. The Nine
Chapters on Mathematical Procedures, a text handed down in the written tra
dition, is also shown to echo the mathematics involved in putting regulations
into practice, although less intensely than the manuscripts, which together
with Chemla 2016 (2018) may testify “to the emergence of a more common
and less situated mathematics” than the one practiced by state officials [25].
Part 2, which is motivated by part 1, is an effort to detail, in the cases of
China and Mesopotamia, practices by which spatial extension and work
were quantified. The procedure adopted involves paying attention to the
“various ways of quantifying spatial extension and their relationship with
one another” [26]. In assessing spatial extension, mentions of vessels are
frequent in all kinds of sources. In some cases, real vessels are also known
from archaeology. The first takeaway of part 2 that is underlined in the
introduction is an enlightened understanding of the reason why two differ
ent ways of measuring spatial extension, namely, capacity and volume,1

1 Here capacity is a spatial extension value in a system where some or all of the units
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are attested in the ancient sources from China, Mesopotamia, and South
Asia, a topic especially worked out by Chemla and Ma in ch. 7. Capacity
could be measured using standard vessels. Volume, on the other hand, was
calculated and thus required mathematical knowledge. In measuring the
capacity of large amounts of a commodity like grain, volume intervened,
and the result could be converted into capacity. Furthermore, the units of
measurement used to express spatial extension were also an indication of
the method used to obtain the value measured [27].
A second takeaway is related to a similar enmeshment between the various
forms of assessing spatial extension, but in the context of the cuneiform
sources. Volumes in cuneiform sources are indicated with the same units as
areas. An important textual genre in cuneiform mathematics, the metro
logical tables, is subdivided into capacities, weights, lengths, heights, and
surfaces. There were no exclusive metrological tables for volumes; those
for area were used for volumes too. This is the first entanglement between
units of measurement, namely, spatial extension and surfaces. Besides, in
the cuneiform sources, measuring the spatial extension of a pile of bricks
also involved some specifics. More precisely, this was “the use of specific
coefficients (nalbanum), expressed using the sexagesimal place value sys
tem and depending on the size of the brick”, and the result was sometimes
understood “as a volume expressed in a number of bricks” [29]. In order to
understand why practitioners used different types of volumes, it is necessary
to look at their practice. So, Stephanie Rost [ch. 5] unscrambles the adminis
tration of canals in the Ur III period, of which both the planning and the
execution required computation of volumes and conversions involving
workloads, capacities, volumes, and wages. In the same line, Martin Sauvage
[ch. 6] decodes several aspects of building projects that involved managerial
operations with (sometimes extraordinarily) high numbers of bricks. In
relation to volumes of bricks expressed as a number of bricks, Michel and
Chemla argue that it “may constitute a mathematical reflection of a type of
unit that has a specific usefulness for administrative quantifications of a
given kind” [31]. Giving more precision to the statement, they say:

Brick units were units of volume used for specific purposes. In these con
texts, and in these contexts only, they may be considered as being standards
of measurement that could be used to measure a volume directly. [31]]

are dependent on measuring vessels. Volume is a spatial extension value in a system
where some or all of the units are related to units of surface and length.
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All in all, part 2 deals with topics in which historians can benefit
from bringing together mathematical documents, administrative regulations
and documents of practice, in cases when these sources seem to have been
related with each other in actual practice. [31]

Part 3 comprises only chapters 8 and 9. The geographical and thematic
scopes of this section are very focused: the calculation of surfaces (both of
plots of land and geometrical figures) toward the end of the early dynastic
period in Mesopotamia, indicated by Assyriologists as ED IIIa and ED
IIIb, which in political history correspond to the two and a half centuries
that preceded the accession of Sargon I of Akkad. Chapter 8, by Camille
Lecompte, analyzes a group of texts originating from field survey practices.
Chapter 9, by Proust, treats a small number of texts that are, at least in
part, a bit older than those analyzed by Lecompte. These are, by the way,
considered the earliest surviving mathematical cuneiform texts [35, 346].
The tablets analyzed by Proust are numerical and do not give the context of
the calculation of surface areas presented. In the introduction of the book,
Michel and Chemla, comparing chapters 8 and 9, draw a conclusion that has
deep theoretical consequences for the work of historians of mathematics:

In any event, we can derive several conclusions, essential for us here. First,
we see how a historiography that would rewrite the actual numbers and mea
surement values used by the actors may obscure the actual problems they
were facing. Moreover, here, in relation to the specific features of the measure
ment units, what we may consider to be a single problem—the computation
of an area—, solved by a single operation—multiplication—, appears clearly
to have constituted different problems, depending on the size of the surfaces
considered. [37]

So, they conclude, part 3 “has allowed us to highlight differences precisely
in the mathematical knowledge practices brought into play to address the
same problem” [38]. These differences make the comparison meaningful to
us, but perhaps actors would understand it differently. This brings us to the
final part of the book.
Part 4 is more specific. It examines

more systematically, and more broadly, how documents of practice and math
ematical texts compare with each other with regard to [the] mathematical
knowledge and practices to which they attest, in cases when they can be
meaningfully compared. [38]

That is, the four chapters comprising part 4 of the book treat prices, rates,
loans, and interest in the contexts of both cuneiform and Sanskrit texts, plus
the European Middle Ages. According to Michel and Chemla, the chapters
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in part 4 can be classified under three headings in diverse ways.
There is a case in which values of a different mathematical nature are used
differently. This is examined in chapter 11 by MiddekeConlin, who brings
strong evidence that a certain official in the kingdom of Larsa received
mathematical training in the style found in the more strictly mathematical
sources, attesting thus to a continuity between the mathematical cultures
of the school and the practice [38–40]. But there are also cases in which
different cultures of computation can be identified in the ways in which
quantities are handled, ways which are examined in chapter 10 by Michel
and chapter 12 by Sreeamula Rajeswara Sarma and Takanori Kusuba.
In chapter 10, Michel shows that Assyrian merchants learned to calcu
late and made calculations of prices and interests directly using values
of measurement but not the sexagesimal place value notation; thus, their
mathematical culture of computation was entirely different from what is
found in the Babylonian region during the same period in the same context
of converting prices and computing interest [40–41]. Sarma and Kusuba
offer a comparison of interest values in mathematical texts with those found
in administrative and legal treatises. While such treatises demonstrate a
systematic preoccupation with the notion of fairness in setting a limit on
the value of the interest rate, mathematical texts are mostly concerned with
the mathematical aspects of the topic and sometimes they mention interest
rates that would be considered too high if put into practice [41–42].
There is, finally, a case in which different cultures of computation are
identified in the way knowledge is organized, a topic also examined in
chapter 12 as well as in chapter 13 by Marc Bompaire and Matthieu Husson.
In chapter 12, Sarma and Kusuba argue convincingly that the way in which
knowledge about the calculation of interest is organized is seen to differ
when the mathematical chapters in the Sanskrit treatises on astral sciences
are contrasted with other mathematical texts. While the latter seem to reflect
a state of things closer to actual practice, the former contain problems on
interest calculation that, because of their visual way of handling data and
the introduction of a new conceptual framework, seem to indicate their
desire “to address new types of mathematical issues” [42].
Finally, according to Michel and Chemla [43], chapter 13 provides us with
a “broader view of the contrast between the two mathematical cultures”
reflected by John of Murs’ treatise on coins, the De monetis, and by manu
scripts used by professionals who managed coins. John Murs’ treatise values
generality in situations where the professionals’ manuscripts prefer instead
to use shortcuts both to simplify calculations and to make operations visible
[43–44]. Michel and Chemla conclude:
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As for most of the cases analyzed in this book, the cultures of quantification
and computation thus appear to be very strongly influenced by the values
meaningful to the professional milieu considered. [44]

2. Summaries of the chapters

2.1 Mathematical writings, regulations, laws, and norms (Part 1)

Cécile Michel, Robert MiddekeConlin, and Christine Proust, in “A Com
parative Study of Prices and Wages in Royal Inscriptions, Administrative
Texts and Mathematical Texts in the Old Babylonian Kingdom of Larsa” [ch.
2], concentrate on wages and prices in the kingdom of Larsa during the Old
Babylonian period (20th and 19th centuries bc). The goal of the chapter
is to assess the extent to which prices and wages in royal inscriptions and
mathematical texts “match those of administrative texts” [57]. The rationale
for such a comparison is that, although administrative texts did have to con
form to reality because “they document economic and everyday activities”
[57], both royal inscriptions and mathematical texts did not necessarily do
that. Royal inscriptions present “the king’s point of view”, so they “provide a
biased perspective and cannot be used uncritically” [54]. Mathematical texts
offer a view of the situation in two ways: “Scribes were aware of possible
fluctuations in price linked to the availability of goods” [56], but in several
“mathematical texts, problems deal with abstract situations”, thus having
less connection with real administrative and economic activities [57].
The inscriptions of the kings of Larsa show stability of wages and prices.
The authors describe wages paid to workers employed in the construction
of several monuments: under NūrAdad, the great wall of Larsa; under
Sîniddinam, the digging of the Tigris and the building of a shrine for
the Sun god (the Ebabbar temple); under WaradSîn, the wall of Ur. The
authors also compile prices that were set under these kings according to
their inscriptions [58–59]. Apart from the wages said to be paid to workers
under Sîniddinam, which were much higher than the other wages, all
these inscriptions indicate “stability and uniformity” [60]. Evidence from
Uruk, under the contemporaneous reign of Sînkašsid, shows the same
average values [59]. Finally, since tablets containing passages from the Code
of Hammurabi were also found in Larsa, the authors describe the sections
that correspond to wages and prices, the latter being more specifically for
hires [60–62], completing the treatment of royal inscriptions.
As there is no mathematical text with assured provenance from Larsa,
mathematical texts are only quickly examined and conclusions are kept
at generalities. The authors restrict themselves to but four “catalog texts”,



Carlos Gonçalves on Mathematics in Ancient Worlds 15

which is how texts containing statements of problems without solutions
are referenced. Two of these catalogs concern canals (YBC 4666, YBC 7164),
and the other two bear upon excavation works (YBC 4657, YBC 5037). These
texts are described and their numerical contents are displayed in useful
tables [63–65]. Wages are daily payments to workers for different kinds of
work (excavations of canals and maintenance, for instance). The materials
in use varied too: earth, mud, water, or silt, plus what the ancient vocabulary
refers to as šilutum and dusu, terms for which the exact meaning is said by
the authors to be unknown [63], and, finally, a term meaning “a mixture of
plantmatter and earth” [63].
The administrative texts described in this chapter fall into two categories:
there are those that detail transactions such as “deliveries or receipts of
goods, sale contracts, lists of expenditure, loans,…animals, textiles, wool,
reeds, bricks, etc.” [65]; there are also others that list “wages paid to workers”
[69]. One text of each kind is quoted and described in detail. Seventeen texts
of the first kind have their contents summarized in a table [67–69]. They
cover a century, “from year six of the reign of Sîniddinam until the seventh
regnal year of Samsuiluna” [66]. The data from this material permit the
authors to conclude that during this period the value of silver in relation to
gold increased from 1:9 and 1:7 in year 2 of the reign of RimSîn to 1:4 and
1:3 in year 27 of the reign of RimSîn. This phenomenon is similar to what
Farber [1978] described concerning northern Babylonia. The second kind of
text, listing wages paid to workers, covers the period from year 10 of Warad
Sîn until year 38 of RimSîn, making 40 years. From these data, the authors
draw our attention to the fact that the “wages range from a few silas to 1
bariga per day when officials are concerned” [72].
The data concerning wages and prices in the three genres of text are then
organized in summary tables, depicting values equivalent to 1 gin of silver
[Table 2.8], wages per day of workers in the construction of buildings [Table
2.9], and wages of various types of work in grain or silver, per year, month, or
day [Table 2.10]. The authors note that, as the texts analyzed were produced
in different environments and for different purposes, comparison has limits
[73]. Having said that, a few insights are elaborated [77]. First, a comparison
of prices and wages in royal inscriptions and administrative texts makes
clear the difference in purpose of those royal inscriptions describing a king’s
building projects and those depicting the king as a bearer of justice (as in the
Code of Hammurabi and the Laws of Ešnunna). More precisely, the prices
in the administrative texts are systematically higher than those in royal
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inscriptions, but only similar or lower in comparison to the prices stipulated
in the Laws of Ešnunna. Besides, while in building project inscriptions the
kings wanted to boast of how well paid their workforce was, in the law
inscriptions the kings intended to create an image of protector of common
workers from exploitation by fixating on what were probably minimum
values for wages.
Second, topics in mathematical problems are reminiscent of the building
concerns of kings and may be a “heritage of the Ur III period from which
tens of thousands of texts” relate to these topics [77]. However, the numerical
values, as apparent in the comparison with administrative texts, are real.
This means that the “authors of these problems” might “have been inspired
by the organization of the work of large construction projects” in the turn
of the third to the second millennia but used values as practiced in their
own time [77].
Mark McClish’s “Computation in the Arthaśāstra” [ch. 3] is a philological
study of computation practices in the Arthaśāstra of Kauṭilya. According to
McClish, the Arthaśāstra was first composed in the first century bc and was
extensively rewritten around the third century ad [81–82]. It circulated in
“royal courts and offices” as well as in elite educational circles [82]. Despite
not being relatable to any specific context, the Arthaśāstra gives detailed
instructions about several activities of interest to state administration, from
which “something can be gleaned regarding practices of computation” [82].
The text has many limitations as a historic source because “its purpose was
never to describe the practices of any given place or time” [83]. However, as it
is “clearly informed by observations and knowledge practices” [83], it is nev
ertheless informative of at least the “framework within which educated ad
ministrators, kings and others thought about the activities of the state” [83].
The sources used by the Arthaśāstra were probably composed after Emperor
Aśoka’s rule (268–231 bc). They belonged to a stream of “expert tradi
tions devoted specifically to the topic pertaining to governance” [84]. The
Arthaśāstra, however, does not offer details of computation, but the state
that it envisions is one that “required specialized expertise, often including
specific computational practices” [84]. Thus, what can be learned about
computational details of that state depends on “close study of the language
used to express and work with numbers and measurement values” [85].
McClish informs us that the Arthaśāstra expresses numbers by using the
conventional systems of Sanskrit words, and that they are used together
only with measurement units or when items are counted [85]. According to
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the Arthaśāstra, there are four ways a value can be specified: “weighing,
measuring, counting and estimating” [85]. The author then presents a
detailed account of the words and expressions used for measuring weight,
capacity, space, and time [86–95]. This is followed by descriptions of how the
Arthaśāstra treats counting [96] and appraisal (tarka), the latter understood
as the “process for assigning values to objects alongside the acts of weighing,
measuring and counting” and underlining “human agency to a greater
extent than a simple measurement” [97].
When studying the operations and procedures in the Arthaśāstra, it is
important to understand the previous processes of assigning value because
“the Arthaśāstra does not engage in any computation with decontextualized
numbers” [97]. Even so, it is difficult to identify in the text any piece of
evidence for computation, both because the Arthaśāstra is silent in relation
to operations and procedures and because it is not always clear if processes
depended on measurement rather than on computation [97]. In any case, in
the Arthaśāstra, operations or procedures can be divided into increase and
decrease. Increase includes addition and iterative addition [98–102] as well
as multiplication [102–103]; decrease, subtraction and iterative subtraction
[103–106] as well as fractional division [106–107].
One example is found in the inspections of changes of volume of grain that
were carried out under the responsibility of the superintendent of the store
house. The text of the Arthaśāstra presents the variation of volume both
when the grain is worked in several ways and for several types of grain. Mc
Clish draws our attention to the ways these variations are described: as a frac
tional ratio decrease or increase, as the subtraction or addition of a fraction,
and as a multiple of the amount of reference [108]. Besides, the Arthaśāstra
presents cases when fractions correspond to successive operations, which
may be “some indication of a twostep procedure” [109]. The author explains,
“Grain kernels are not conceived as a fraction of the unhusked volume per
se, but as a fraction of half of the unhusked volume” [109]. Although it is
not possible to know exactly the operations to which such representations
corresponded or if they are witness to a preference for computing with frac
tions, it is certain that “the Superintendent’s activities require computation”
[109]. Besides, it opens a possible avenue of research, “comparing the use of
fractions here with other quantitative practices in the text” [110].
The second operation examined concerns the application of fines “for the
use of erroneous measuring instruments by merchants” [110]. By analyzing
a passage of the Arthaśāstra that specifies a series of increasing fines for
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a series of increasing errors [111–112], McClish arrives at a very interesting
conclusion. The calculation of fines is less a matter of effectively carrying
out the calculation with fractions of the units of measurement and more a
consequence of the way the system of weight units is structured: “Deviations
were identified through measuring practices rather than computation” and
“the application of these rules in the field need only have relied on knowing
the measurement intervals at which fines were assessed” [113]. So, the
implied computation in the analyzed passage would only involve “carrying
out the iterative addition of standardized fines” [113].
After analyzing other topics of the Arthaśāstra that imply computation
practices, namely, interest for coinage fees [113–114] and the excavation
and construction of defenses [114–116], McClish summarizes the concern
of the state with computation by noticing that it must have been most
important in areas such as “state finance; commerce; fines; stores; regulation;
manufacturing; and the planning of construction” [116].
The term «gaṇita» is the “primary Sanskrit term for the tradition of mathe
matics” [117], but in the Arthaśāstra its two occurrences mean counting
only [117]. The closest the Arthaśāstra comes to mentioning mathematics
or computing is by means of the term «saṃkhyāna» [117], a term which in
the pair «lipi» and «saṃkhyāna» “captures the fundamental distinction be
tween literacy and numeracy” [117]. To McClish, the uses of the verbal form

«sam + khyā», the elements composing «saṃkhyāna», “refer specifically to
processes that result in quantification, whether the processes themselves
are computational or not” [118]. The term «anumāna» occurs mainly in re
ferring “to processes or results of processes that use some kind of inferential
framework to determine a quantity” [119], as “an inference” that is “made as
to the quantity of food consumed by an animal in one day” [119] or “an infer
ence of the loss in value suffered by different kinds of objects because of dam
age” [119]. The final term mentioned is «tarka» (appraisal), as seen above.
In the last section of his chapter, McClish explains how this analysis of the
Arthaśāstra fits in a wider research program on “South Asian intellectual
history” [121]. For example, the operations and procedures common in the
Arthaśāstra are afterward borrowed by the legal tradition. A comparison
between astronomical contents of the Arthaśāstra and the Jyotiṣavedānga
(an astronomical treatise dated to 400 bc) also reveals similarities [121].
The chapter finishes by presenting exciting avenues of research in which
the analysis of the Arthaśāstra constitutes a possible framework connecting
it to “other cultures of computation in classical South Asia” [122].
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“Official Salaries and State Taxes as Seen in QinHan Manuscripts, with
a Focus on Mathematical Texts” [ch. 4] by Hao Peng/ 彭浩 is a study of
how mathematical texts from the Qin (221–207 bc) and Han (206 bc – ad
220) periods deal with salaries. The sources used for this study are, for the
Qin period, Mathematics (Shu) and, for the Han period, the Statutes and
Ordinances of the Second Year (of the Empress Lü) (Er nian lü ling), drafted
in 186 bc, and Writings on Mathematical Procedures, dating to no later than
187–180 bc. In addition, Peng takes into account the Juyan administrative
documents, covering the interval from 103 bc to ad 293 but dating mostly
to eastern Han (ad 23–220). Finally, Peng also considers The Nine Chapters
on Mathematical Procedures, a text believed to preserve contents from the
Han period [126–127].
Salaries of official employees (zhi) reflected their ranks (also associated with
the meaning of «zhi» as “order” [127]) both in the Qin and the Han sources.
The former mentions officers of 50 dan and 100 dan as well as prefects of 600,
700, 800, and 1000 dan. The “capital clerk and commandery governor are
2000-dan offices” [128]. The latter mentions officers of 2000, 1000, 600, 500,
400, 300, 200, 160, and 120 dan plus lower ranked officers described as dou
eaters (the dou was 1⁄10 of a dan). Salaries corresponded to amounts of grain,
but mixed payments could occur, as attested in the Juyan administrative
documents, which mention “cash” and “salt” payments [129–130]. Also,
for nongraded officials, payments had to be deducted for periods of leave
and meals taken on the road that were paid by the state [130].
The mathematics of the payroll depended also on conversions. First, it was
necessary to convert harvested amounts of grain to unhulled grain (su)
because the latter was the standard for all official calculations [132]. It was
also necessary to use conversion rates between coarse and refined grains
[133] as well as between hulled and unhulled grain [134], a conversion
useful in the case of the deduction of the on the road meals once these were
given in hulled grain [134]. Finally, the Qin and Han manuscripts also deal
with the daily rations of salt and condiments [136]. Peng ends this part of
the chapter with two remarks that accentuate the importance of metrology:
fines were instituted for deviations greater than the one legally stipulated
[137] and physical standards were produced, like the Shang Yang bronze
sheng and the Gaonu [Prefecture] harvest plant dan bronze weights [138].
The next section of the chapter deals with the issue of state tax collection.
Peng introduces the reader to a very diversified universe. Field tax, levied in
grain, and haystraw field tax, levied in fodder, are the first of the primary
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forms of taxation [139]. The taxed lands continued to belong to the throne,
but the lessees paid the taxes and had the right to manage it. An interesting
aspect is that lessees were entitled to “indemnities for crops eaten by another
man’s domestic animal” [139]. Another interesting aspect is the amount
of land granted, which was closely related to the rank of the lease [139].
Another form of primary taxation appears in pass and market taxes. A pass
was an inspection point, either in the frontiers or in strategic commercial
places [140]. The details about how pass taxes were collected appear only
in the mathematical works. As regards market taxes, this “refers to periodic
country markets and permanent commercial zones possessed of specialized
stalls for the exchange of urban and rural commodities” [141]. Both the
Shuihudi and the Yuelu Academy manuscript corpora contain details about
its management. One interesting aspect is the money box: cash markets had
to be set by market administrators, who personally deposited the cash in a
money box and certified the deposit in triplicate [142]. Peng then describes
mining and salt taxes [142–143], poll taxes and mouth taxes [143], and
government service [144].
The last section of Peng’s chapter is devoted to detailing the collection and
management of field taxes, which depended mainly on the maintenance
of “complete land records and statistics on cultivated land” [145]. There
are national statistics such as the Book of Han registers, but also statistics
in lower administrative levels, commandery, and prefecture. The documen
tation mentions delimited fields, allotted fields, and borrowed fields. Peng
discusses details of these different ways of describing a field [145–148].
The determination of how much to pay on tax fields depended on the field
norm, which was the surface “required to achieve a production value in
a given unit (be it capacity, volume or weight)” [148–149]. The norm was
the “unit for calculating tax”, and tax fields had to be registered in duplicate
tickets [149]. Mistakes in ticketing appear as a problem in the mathematical
texts, where they are corrected by “reducing the area of the tax field in
question” [150]. Related legal statutes contained provisions of punishment
for “officers for any mistakes they might make in the calculation, auditing
or collection of field tax” [152].
Peng concludes his “overview of the application of mathematical know
ledge in the state administration of salaries and taxation in the QinHan
period” [152] by underlining the “variety of policies, economic regimes
and laws on the macrolevel” and feasible “methods for their implemen
tation” [152]. This attests, the author concludes, to the “fairly high level
of mathematical knowledge” [152] that officials of higher ranks involved in
the state administration had to have. This is consistent with the fact that
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such officials were evaluated, among other criteria, for their writing and
accounting skills [152–153].

2.2 Quantifying spatial extension, quantifying work (Part 2)

Stephanie Rost’s “Insights into the Administration of Ancient Irrigation
Systems in Third Millennium bc Mesopotamia” [ch. 5] is a study of the
mathematics found in irrigationrelated texts of the Ur III dynasty.
Her chapter begins with a survey of Ur III society, focusing on the sociopoli
tical background and the management of the agricultural land. It details
the division of the kingdom into provinces, with special attention to the
provinces of Umma and Girsu/Lagaš [162–163], the inner administrative
division of the province of Umma into four districts, and the description of
the main families that held important official posts and the governorship of
the province [163–164]. Agricultural work is described by specifying the
hierarchical relations between ox drivers, cultivators, inspectors of plow
oxen, and scribes of plow oxen [164–166]. Connected to agricultural work
was the issue of how land was separated into institutional and royal sectors
[162–164]. Finally, there was the further issue of how a system of taxation,
the bala system, connected all the provinces to the central administration
[164]. Rost explains that

in order to administer these complex labor systems and keep track of the
fulfillment of a province’s bala tax obligations, a bureaucracy of previously
unknown dimensions was employed to keep records of nearly all aspects of
life, including irrigation management. [170]

One of the most important innovations in this context was the introduction
of standardized work norms that enabled officials in charge to convert total
workloads into individual workloads and workdays [171]. The majority
of the documents from the Ur III period are reports of expenditures of
labor and goods, including the documents that are the object of Rost’s
inquiry, texts related to irrigation as exemplified by text 1 (A 02644), in
which tasks were specified together with the number of workers and the
duration (although all of them are intended to be done in just one day).
As Rost explains, “There are also texts that represent the planning stage”
of irrigation projects [171], which is very important for the whole reasoning
of the chapter. In this way, the bulk of the chapter [171–195] is dedicated
to presenting a few representative texts, each one instantiating a different
phase of work in an irrigation project: initial inspection [text 2: YBC 00952];
surveying and computation of costs, such as amount of work [text 3: YBC
01821 and text 4: Um. 1594]; assignment of workload to supervisors [text
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5: Um. 0757 and text 6: BM 105352]; execution of work [text 7: Um. 0993,
a receipt for the execution of the assigned work]; and payment of personnel
[text 8: VAT 07384].
In presenting and translating the texts, Rost covers a large amount of con
textual information and offers hypotheses for the interpretation of the less
welldocumented (or undocumented) aspects of the administration of an ir
rigationrelated work. In all, the author delineates a comprehensive view of
how the different phases of the process might have been connected among
themselves and to the other spheres of the Ur III administration. In par
ticular, Rost comments that the appearance of members of the governing
families in irrigationrelated works may be an indication that these works
were of great magnitude and importance [190]. Also, by analyzing the dates
of some of the documents, Rost suggests that irrigation systems might have
been more stable than previously thought [182] in Assyriological studies.
In her conclusion, Rost emphasizes the importance of texts containing the
planning of irrigationrelated works [195]. They indicate that the admin
istration of the province preferred to take part in all the phases of the work
and that midlevel administrators had to master a skill set that was broader
than has been previously assumed, suggesting also “a much higher level
of literacy and numeracy in Ur III society” [195].
The chapter ends with a caveat. The texts analyzed represent the reality of
the socalled institutional sector of the Ur III administration and so allow
one to conclude that irrigation works in this sector were tightly controlled by
the province administration. Less is known about the much larger socalled
royal sector, which might have had a different type of organization [196].
Martin Sauvage’s “Mathematical Computations in the Management of Pub
lic Construction Work in Mesopotamia (End of the Third and Beginning of
the Second Millennium bc)” [ch. 6] is an investigation on the calculations
used in constructions made with bricks. The goal of the chapter is “to see
what types of calculations Mesopotamian scribes were trained in for the do
main of construction and to try to check how far these calculation methods
were really used in practice” [202]. The sources are both the more strictly
mathematical texts from the scribal schools of the old Babylonian period
and “practical administrative texts” from the Ur III and the old Babylonian
period [207]. The practical texts contain “provisional estimations” of the
material and workforce needed, “statement of accounts” of expenses, and
“lists of works and their tasks” [207].
Sauvage offers a survey of the studies of the mathematics of bricks, touching
on the Ur III and the old Babylonian periods. In mathematical texts, one
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finds both a typology of bricks and mathematical tools to solve problems
related to building. According to the author, 14 types of brick are known
[211], and the mathematical tools for working with bricks are labor norms
and coefficients. The labor norms (Akkadian iškarum, Sumerian eš2-kar3)
indicate how much work an average worker can perform per day. Examples
are the volume of bricks that can be stacked, the volume of a wall that can
be demolished, and the volumes of sundried or baked bricks that can be
made [208]. Coefficients are used to “calculate certain magnitudes from
other magnitudes” [210]. The tupšikkum is a weight load; the muttallikum
describes a distance that a certain amount of material can be transported
in a day by one person. For bricks specifically, Sauvage presents the nal
banum, “the number of bricks of a specific type in a volume unit” [216];
the nazbalum, “the number of bricks contained in a carrying load” [219];
and the taddîtum, “the number of bricks of a given type in a one sar area”
[219]. The norms and coefficients are present in many mathematical texts
dealing with brickwork. In some cases, for example, when a wall must be
demolished and the material be carried over a distance [221], tasks must be
serialized and the coefficients combined.
In a much shorter section, Sauvage presents and comments on the contents
of a few Ur III administrative tablets, the numerical contents of which
suggest that different values for labor norms and different brick coefficients
were in use in that period. More precisely, the values in tablet AO 5675,
from Umma, indicate the use of a work norm of 10 sar of area per day in
a reedrelated work [222]. Tablet MLC 2404, also from Umma, indicates
the use of a volumetric work norm of 10 gin per day, a very common value
for some earthworks [222]. Tablet A 2976, of unknown provenance, is a
“provisional review of the materials and men that would be necessary for
the construction of a storehouse” [223], indicating the use of different
work norms and the nazbalum coefficient for brick carrying [223]. Finally,
CUNES 48-07-066, from Garšana, is “a list of brick deliveries” [224] that
also presupposes the nazbalum as applied to bricks that correspond to one
of the known types.
Sauvage concludes that “mathematical exercises were created with realistic
values in order to provide practical training for the scribes who would work
later on building operations” [224], which means that “in this respect, train
ing of the scribes concerning building work was really practical and not
only theoretical” [225]. As a last contribution, Sauvage points out possible
avenues of research, namely, searching for a better understanding of the
differences in labor norms between men and women—a difference not
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commented on in this review but present in the sources analyzed by the au
thor—and if and how work norms were subjected to negotiation “according
to specific situations” [225].
“The Use of Volume in the Measurement of Grain in Early Imperial China”
[ch. 7] by Karine Chemla/ 林力娜 and Ma Biao/ 馬彪 is an inquiry into why in
early imperial China (third century bc to first century ad) two different
systems of measurement, namely, volume and capacity, were used to deal
with the same issue, that of assessing spatial extension, sometimes being
used for the same type of material, for example, grain measured by volume
and grain measured by capacity.
Chemla and Ma’s argument is grounded in the way in which mathematical
texts deal with spatial extension, especially that of grain. The texts selected
for analysis are:

∘ the Writings on Mathematical Procedures (Shuanshu shu/ 筭數書),
exhumed from a tomb sealed around 186 bc;

∘ Mathematics (Shu/ 數), dated to the Qin dynasty (221–206 bc) by
its editors; and

∘ The Nine Chapters on Mathematical Procedures (Jiu zhang suanshu/
九章算術), probably compiled during the first century ad.

All of them, for different reasons, reflect the actual practices of the ad
ministration of early imperial China, and in all of them grain is a relevant
topic. In addition to The Nine Chapters, Chemla and Ma pay attention to
commentaries on them, especially those written by Liu Hui in ad 263 and
by Li Chunfeng and presented to the throne in ad 656.
To prepare the argument, the authors explain that in the mathematical
texts there were indeed two ways of expressing spatial extension. On the
one hand are capacities, which were expressed with a specific system of
units, the dan (later hu) of 10 dou and the dou of 10 sheng [244]. This
system is well attested in the mathematical texts. On the other hand are
volumes, expressed not with specific units of volume but by a specific way
of using units of length. Thus, a volume of 𝑛 chi corresponded to a “cuboid”
(a square right prism) of square base with sides of 1 chi (here the chi is a
unit of length) and height 𝑛 chi (here chi is a linear unit of measure again).
The chi in the result was referred to as the “chi of the numberproduct, ji”
[252]. Chemla and Ma emphasize that this clearly shows that there were
two ways of expressing spatial extension and that these were also attested in
the documents of practice.
One interesting consequence of the distinction is that capacities could be
measured by standard vessels (like Shang Yang’s cuboidal sheng and Wang
Mang’s cylindrical hu), while volumes could not. Instead, volumes had to be
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calculated. This is exemplified with a problem from The Nine Chapters on a
pile of millet supposed to have the form of a cone of known dimensions, for
which one is asked to find the number product ji, the volume [253]. Chemla
and Ma’s insightful interpretation asserts that, in this way, volumes are a
connection between geometrical forms and numbers [254]. That volumes
are calculated also comes from the manuscripts because they contain tables
that can be consistently understood as aids to calculating with measures
of length in a way that produces volumes [257]. All this leads to the main
question of the chapter: “Why is it that in some cases, the spatial extension
of amounts of grain was expressed as a volume, and not as a capacity?” [259].
The authors present a first step leading to an answer by analyzing occur
rences of the units dan and hu in certain passages of the texts Mathematics
and The Nine Chapters, respectively. Remembering that “dan” is the name
of a unit of capacity and of a unit of weight, Chemla and Ma note that
in the selected passage from Mathematics it must have a third meaning.
Similarly, “hu” must have a different meaning from its usual meanings as
either a unit of weight or a unit of capacity. The key is eventually found in Li
Chunfeng’s Monograph on Pitch Pipes and the Calendar: the third meaning
of “hu” is a unit of value [262]. Thus, the passage in which it occurs in The
Nine Chapters relates different volumes of different grains, with each having
the same value of 1 hu. The same is valid for the “dan” in Mathematics.
Summing up, volumes are introduced in order to assess value.
Next, Chemla and Ma show that “every time volume occurs in relation to
grain, an assessment of this kind is at stake” [264]. Noting that the passage
from Mathematics dealing with hu as a value associates it with a vessel,
Chemla and Ma offer a thoughtful analysis of two very wellknown vessel
standards of capacity: Shang Yang’s cuboidal sheng (dated to 344 bc) and
Wang Mang’s (45 bc – ad 23) cylindrical hu [265–267]. For that, they draw
on the results of their previous research where they showed that for a certain
state of grains (“standard coarsely husked grain” [265]) the unit of value
and the unit of capacity coincided. Then, as both vessels just mentioned
have inscriptions explaining how their linear dimensions were chosen by
their creators to produce volumes that could be related to “standard coarsely
husked grain”, these vessels end up being a bridge between the volume of a
specific geometric form and its capacity [268–269].
A last piece of evidence connecting volume, capacity, and value comes
from three problems in The Nine Chapters. These problems deal with piles
of grain, first in the form of a cone, then a semicone (because the pile is
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against a wall), and finally a quarter of a cone (because the pile is against the
corner of a wall) [270]. The solutions are computed from the corresponding
volumes and, with division, the corresponding values in hu. It is interesting
that the results are expressed as an integer part followed by a fraction,
which according to Chemla and Ma, “could by no means result from a
measurement” [271]. Similar problems occur in Writings on Mathematical
Procedures, but now they are related to the dan instead of the hu.
Next, Chemla and Ma compare the use of volume and capacity in the
measurement of grain [273] when value was at issue. First, a calculated
volume could be divided by the volume of the unit of value. In mathematical
writings, in the context of “tax payment and also in relation to issuing or
receiving grain in the context of granaries” [273–274], the value of small
amounts of grain was assessed by measuring capacity, and the way in which
the results were written indicates that they were the result of measurement
with “sequences of vessels” [274]. In mathematical texts, when it comes
to large amounts of grain whose value was sought, units of volume measure
ment are used, possibly because this would reduce the number of operations
and so give more precision to the operation, which might be in turn the
reason why volume as “a theoretical kind of magnitude” was introduced, as
Chemla and Ma suggest [275].
In their conclusions, the authors argue that two types of quantities (capac
ity and volume) were used to assess spatial extension because they could
incorporate the way in which a measurement had been made before the
conversion to value [276]: capacities were measured by vessels; volumes
were obtained by assigning a geometrical form to a spatial extension and by
calculation. Moreover, the spatial extension of concrete capacity vessels
designed to express the value of a certain amount of grain in a certain state
was defined using a calculated volume, thus confirming the connection
between “extension and value” [276].
The chapter opens several avenues of research, such as whether there was
any recognition of proportionality between the height and circumference in
piles of grain [271], of a relation between the forms of standard vessels and
granaries [273], or of value as a central unit in managing granaries [276].

2.3 Quantifying land and surfaces (Part 3)

Camille Lecompte’s “The Measurement of Fields during the PreSargonic
Period” [ch. 8] has its starting point in 15 field survey texts from the early
dynastic IIIb period. In survey texts in general, the fields themselves are di
vided into three categories: lease (apinla2), subsistence (šuku), and domain
(niĝ2-enna) [285]. These texts come from Girsu and involve measurement
of the sides of the fields and of their surfaces [286]. The majority of texts
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deal with domain fields, but some are surveys of subsistence fields [286]. All
in all, they represent a kind of work that was essential to the management
of fields [286]. This is illustrated by the fact that survey texts from Girsu
are “written under the responsibility of high officials” [289], although there
were certainly lowerrank individuals playing important roles in the ad
ministrative flow, such as the “land recorder” [287], the “land surveyor”
[287–288], and the “field assessor” [288].
There are fields measured as rectangles, and their surfaces are calculated as
the product of length by width [291–293]. That the fields were exactly rec
tangular is hardly possible, so the method for computing the area represents
a “firstorder approximation” [291]. In other fields, the surface is obtained
by the product of the average length by the average width, a procedure
known as the land surveyor’s formula in the historiography of mathematics
[293–297]. In these cases, the fields were irregular in shape “but still roughly
correspond to quadrilaterals” [293]. The land surveyor’s formula is equally
applied in the survey texts from Girsu in situations where the fields have
one pair of parallel sides (called trapezoids in the chapter). In this case, only
three measurements are given, for instance, a length, a second length, and a
width, and the area is calculated as the product of the average of the lengths
by the width [293].
Lecompte then notes that neither of these two procedures matches the
“surface of the fields as indicated in the tablets, which seems to be due
to rounding” [298]. Because the tablets do not explicitly show how the
computations were made, it is impossible to know the exact reasons for the
discrepancy. However, it is possible to offer a tentative classification of the
types of divergences, as Lecompte does in the conclusion [307]: the fields are
not exactly the shape of the geometrical figures assumed by the calculations;
scribes sometimes preferred rounded values, which were obtained by the
omission of smaller units of surface; and the use of the surveyor’s formula
may produce a large difference in relation to the surface indicated on a tablet.
The chapter also provides important insight into what has been called the
“agricultural landscape”, adding detail and nuance to previous studies on
this topic by Mario Liverani [1990; 1996; and 1997]. Lecompte’s research
leads to the conclusion that “the Sumerian agricultural landscape seems to
have been more diverse than that suggested by Liverani” [305].
Christine Proust’s “EarlyDynastic Tables from Southern Mesopotamia, or
the Multiple Facets of the Quantification of Surfaces” [ch. 9] is a contri
bution to the understanding of how surfaces were quantified in the early
dynastic period, thus establishing a parallel to the chapter by Lecompte.
More precisely, Proust examines five texts (VAT 12593, MS 3047, Feliu 2012,
A 681, CUNES 50-08-001), two of them dated to the early dynastic IIIa (ED
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IIIa = Fara period, 2600–2500 bc) and two of them dated to the ED IIIb
(2500–2340 bc). Each of these texts contains entries specifying the length,
width, and surface area of fields. Proust takes into account several features
of the tablets, the first of which is whether they have a tabular format
(three tablets) or whether they are organized as lists of clauses (two tablets).
Also considered is the shape of the fields, i.e., whether they are square or
rectangular. In addition, Proust explores whether they are large or small
and whether the order of presentation of surfaces follows a decreasing or
increasing order. Last discussed is whether the notation for areas is additive
or subtractive. All this information is summarized in Table 9.2 [353] and
Table 9.12 [383].
One central part of the argument comes from the analysis of tablet A 681,
an ED IIIb tablet from Adab in which information is given as a list of clauses
involving small squares in increasing order. The units of surface used in
this text are:

1 gan = 100 sar,
1 sar = 60 gin,
1 gin = 3 samana, and
1 samana = 60 še.

Surfaces are expressed by an aggregate of multiples of these units, for
instance, 1 gin 2 samana. What is interesting here is that the same surface
can also be expressed using a subtractive notation, e.g., 2 gin minus 1 samana,
such as is found in A 681 [367–368]. The analysis carried out by Proust
leads her to conclude that A 681 was not a mere reference for surface values
corresponding to length values, as the previous tablets analyzed in the
chapter seemed to be [373–374]. The way surfaces are expressed in A 681
is consistent with the possibility that the scribe operated by cutting and
pasting with area elements. If so, this text may have been offered as a list
of mathematical problems, the aim of which was to determine surfaces in a
specific way [374], where the technique used was typical of the foundation of
“a long mathematical tradition” that included socalled quadratic problems
from the Old Babylonian period, which, as Jens Høyrup [2002] has shown,
were solved through cutandpaste operations.
A second enlightening takeaway from Proust’s chapter derives from her
analysis of mathematical tablet CUNES 50-08-001. This text is divided into
five sections, each one presenting the sides and the surfaces of squares of
different orders of magnitude. The first section involves a very wide range
of multiples of ninda. The following four sections deal with successively
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smaller fractions of the ninda:
1 to 10 nikkas, where 1 nikkas = 1⁄4 ninda;
1 to 10 kušnumun, where 1 kušnumun = 1⁄12 ninda;
1 to 10 gišbad, where 1 gišbad = 1⁄24 ninda; and
1 to 10 šubad, where 1 šubad = 1⁄48 ninda.

According to Proust, each section can be generated from the areas of squares
of sides 1 nikkas, 1 kuš-numun, 1 gišbad, and 1 šubad. As she points out, the
areas of these squares are fractions of the area of the square of sides 1 ninda,
that is to say, fractions of 1 sar. Thus, CUNES 50-08-001 is ultimately based
on knowing how to express several fractions of 1 sar, exactly the type of
relationship that would be embodied by the tables of reciprocals in the Ur III
and the Old Babylonian periods. To Proust, this is an indication that CUNES
50-08-001 is “a systematic exploration of sexagesimal computation” [382],
and that the several unexpected units representing very small fractions
of the ninda might “have been created for the exploration of the newly
discovered methods of sexagesimal calculation” [382].

2.4 Prices, rates, loans, and interests (Part 4)

Cécile Michel’s “Computation Practices of the Assyrian Merchants during
the Nineteenth Century BC” [ch. 10] analyzes conversion computations in
school texts and in letter extracts from Assyrian merchants and their family
members [400–402]. The chapter begins with a study of six school tablets,
of which four are from Aššur and two from Kaneš in Anatolia, where the
merchants had business. Although there are other still unpublished school
texts from these localities, the six presented by the author show quite well
that converting a quantity of gold into a quantity of silver of the same value
was a topic studied in the Old Assyrian learning environment from which
these texts come [404–409].
That this topic was in fact useful in practice is attested by two letter extracts
that Michel adduces in which the same type of computation from the school
texts is found [409–411]. Next, in order to give the reader a sense of the con
text, Michel presents and studies a complete letter, called by Larsen [1967]
a “caravan account” [411–413]. In it, the senders explain that a quantity
of gold that they were given by the recipient was converted into silver. They
then list all the purchases that they made with the silver. The total amount
of expenses is almost equal to the original amount of silver. Differences
in calculation like this are the author’s focus in the rest of the chapter.
In order to carry out a systematic analysis of how Assyrian merchants made
these conversion calculations, Michel provides the reader with two distinct
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groups of letter extracts. In the first, the conversions are from gold to silver
[415–418]; in the second, from tin to silver [418–425].
In gold to silver conversions, the conversion rate is the number of gin of
silver that correspond to 1 gin of gold. This means that the amount of gold
has to be multiplied by this conversion rate in order to determine the amount
of silver that is equivalent in value.
In tin to silver conversions, as the tin is the less expensive metal, the conver
sion rate is given as the number of gin of tin that correspond to 1 gin of silver.
Consequently, the given amount of tin has to be divided by the conversion
rate in order to determine the amount of silver equivalent in value. As is
known, division is not an operation performed directly in cuneiform mathe
matics at the beginning of the second millennium. However, as the Assyrian
merchants did not leave any trace of how they did their calculations, Michel
simply presents the calculations, even the divisions, in modern notation,
trying to make them as consistent as possible with the way in which the
results are expressed in the ancient documents.
The documents at issue are nine letter extracts containing gold to silver
conversions and 22 letter extracts containing tin to silver conversions. The
author analyzes explicitly a selection of extracts of both groups because
they result in either an incorrect result or a rounded one.
From this detailed analysis, Michel draws several fascinating conclusions
[429]: merchants sometimes committed mistakes in calculation and some
times used rounding (up or down) to express the result of a conversion,
where these rounding operations were used, for instance, when the numeri
cally correct result would demand using a fraction that was not available
in their arithmetic (e.g., 1⁄7). In the case of the tin to silver conversion,
the rationale could have been very different: the author suggests that the
amount of tin to be converted into silver was determined beforehand from
the conversion rate and the availability of both tin and silver. If this was
true, then the calculations that the merchants performed might actually
have been the multiplication of the amount of silver by the conversion rate,
and the resulting amount of tin was rounded and finally set as the object of
their negotiation. Another interesting result concerns how the Assyrian
merchants used fractions: they consistently “preferred to use fractions of
the higher [metrological] unit instead of integers of the lower unit” [429].
Finally, it should be noticed that the Assyrian merchants’ procedures in the
cases studied did not involve sexagesimal place value notation (SPVN). In
this respect, these procedures are quite different from what is found in the
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administrative practices of the Babylonians, in which SPVN was the constant
tool for multiplication. The chapter finishes by pointing out a possible
avenue of research dealing with how Assyrian merchants might have made
their calculations. As there are at least two old Assyrian texts mentioning
writing boards coated with wax, one of which mentions furthermore some
sort of computing tool [429–430], one should not exclude the possibility that
Assyrian merchants employed some of these devices for the intermediary
steps that inevitably intervened in their making conversions.
Robert MiddekeConlin’s “Connecting a Disconnect: Can Evidence for
Scribal Education Be Found in a Professional Setting during the Old Baby
lonian Period?” [ch. 11] is an inquiry into the reasons for a discrepancy in
calculation found in the administrative text YBC 7473, written by the over
seer of merchants IttiSînmilki in a city of the Old Babylonian kingdom of
Larsa. In the first part of the tablet [441–444], the scribe lists several goods,
relating their inkind values (capacities of sesame, a certain number of rams,
a weight of wool that have the value of 1 gin of silver), their conversion rates
to silver, and the equivalent value in silver. In all these situations, the conver
sion rate declares the amount of the good that corresponds to one gin of silver.
Consequently, the equivalent value in silver is obtainable by multiplying the
original amount of the good by the reciprocal of its conversion rate.
In one of IttiSînmilki’s conversions of sesame to silver, however, Middeke
Conlin draws our attention to a twofold discrepancy. First, the value in
silver is not what we would call a numerically correct value [445–446].
Second, the given conversion rate cannot produce a reciprocal easily usable
in the SPVN system in use during the Old Babylonian Period [453–454]
because it does not correspond to a regular number in this notation.2

MiddekeConlin brings two pieces of evidence to explain this twofold dis
crepancy. First, YBC 4698 is a mathematical tablet, probably from Sippar or
Kiš in northern Babylonia, that shows that conversion rates were also a sub
ject in the mathematical school curriculum [450–451]. This is crucial for the
argument, for, as shown by Christine Proust [2007; 2008; and 2013], in the
Old Babylonian mathematical curriculum it was common practice to take
the given measurement values, convert them to SPVN, make calculations in

2 A number in the SPVN system is said to be regular if and only if its reciprocal has
finite sexagesimal representation. For instance, 3 is regular, since its reciprocal is 20
(3 times 20 gives 60); 7, however, is not regular, since its reciprocal would produce
the infinite repetition 8,34,17,8,34,17,8,34,17….
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SPVN, and finally convert the results back to measurement values. Middeke
Conlin explores the possibility that IttiSînmilki was doing exactly this. As
MiddekeConlin states at the end of the chapter, the overseer of merchants
should have been able to do all the calculations in his business himself and,
therefore, may have had some mathematics education [460].
In fact, all the calculations in YBC 7473 can be easily interpreted in this way,
except the one where the discrepancy popped up. The central point is that
the conversion rate, 1 barig 5 ban of sesame to 1 gin of silver, corresponds to
the number 1;50 (equal in our notation to 110 or 10 times 11), which does
not have an exact reciprocal value in the sexagesimal system (because 11
is not a regular number). IttiSînmilki could have used an approximate
value for the reciprocal of 110 [454–455]. As the reciprocal of 110 should be
obtained by the multiplication of the reciprocal of 10 by the reciprocal of 11,
the real problem here was the reciprocal of 11.
This is where MiddekeConlin adduces the mathematical tablet M10, an
unprovenanced text published by Abraham Sachs in 1952. M10 contains
approximations for reciprocals of a few numbers that do not have exact
reciprocals in base 60, among them an approximate reciprocal of 11 [455].
What is interesting here is that the author of M10 indicated erroneously
that the approximation for the reciprocal of 11 presented in M10 was one in
deficit, that is to say, the author thought that the approximation multiplied
by 11 would produce a result, for practical purposes, less than 1. However,
the approximation for the reciprocal of 11 present in M10 is actually one in
excess, but its author was apparently unaware of that.
And so was IttiSînmilki. If he had used the approximation for the rec
iprocal of 11 found in M10 or in a similar text, he would have obtained
a value larger than the correct one. IttiSînmilki, however, presented an
equivalent in silver even larger, which seems to be a strong indication that
IttiSînmilki believed the approximation he used was in deficit, justifying a
rounding up [456–458].
In order to reconstruct how much IttiSînmilki rounded up the result
of his calculation, MiddekeConlin analyzes the metrological tables of
weights that were current in Old Babylonian schools. His conclusion is
that the amount IttiSînmilki added to the result that he believed was in
deficit is consistent with a pattern of sexagesimal numbers present in such
metrological tables [458–459].
In this way, MiddekeConlin states that it is very probable that IttiSînmilki
had had some mathematical training similar to what research has found in
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Old Babylonian edubas, thus linking the mathematics of the economic and
administrative practices to the mathematics of more strictly mathematical
texts and underlining the importance of the administrative and economic
sources for the study of mathematics in cuneiform sources [459–460]. It
remains only to add that the study of errors, rounding, and mistakes is part
of a large endeavor by the author, most of the results of which are presented
in MiddekeConlin 2020.
Sreeamula Rajeswara Sarma and Takanori Kusuba’s “Loans and Interest
in Sanskrit Legal and Mathematical Texts” [ch. 12] focuses on loan making
in ancient and medieval India as evident in Sanskrit administrative, legal,
and mathematical texts.
The chapter begins with a reflection on the limitations of Sanskrit texts
as historical sources. The Arthaśāstra, specifically, cannot reflect the variety
of practices that must have existed in so vast an empire as the Maurya [464].
Plus, statistical analysis has shown that the Arthaśāstra is composed of sev
eral layers from different periods. Finally, the commentators are so distant
in time from the period of composition that even they have difficulty in un
derstanding its technical terms. As for legal texts, collectively referred to as
Dharmaśāstra, it is not known if and how they were used in courts of law and
whether they prevailed over local customs (deśācāra). In addition, it is diffi
cult to relate these texts to specific periods and regions, although they do con
tain the views “of some ancient thinkers on the general conduct of life” [465].
Over time, as these legal texts were copied and commentaries made on them,
they enjoyed some legitimacy. Sarma and Kusuba consider the three most
influential texts among the legal sources: the Manusmṛti, the Yajñavalkya
smṛti, and the Nāradasmṛti, in addition to the commentaries that formed
with each one of them a “continuous intellectual discourse” [464].
The analysis starts with the explanation that the texts were not in principle
aimed at the caste of merchants (Vaiśyas, or Banias), because as a caste they
had no access to Sanskrit administrative, legal, and mathematical texts [466].
As for their contents, Sarma and Kusuba begin by describing the position
of each of the chosen texts on interest rates. The Arthaśāstra prescribes
different interest rates according to the risk of the capital (from ordinary
loans at 1.25% per month to those at 20% per month). The Manusmṛti
suggests different interest rates according to the caste of the borrower (2%
per month to Brahmins, 3% to Kṣatriyas, 4% to Vaiśyas, and 5% to Śūdras,
the members of the lowest caste). The Yājñavalkyasmṛti distinguishes the
1.2% rate as secured by a pledge and the 2% as for unsecured loans. The
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Nāradasmṛti “acknowledges that lending money is a legitimate means of
increasing one’s wealth” [471] and mentions four types of interest: corporal,
that is to say, daily interest without any diminution on the capital; periodical,
which is interest paid monthly; stipulated or interest agreed upon by the
debtor; and cyclical, interest on interest, which, according to Sarma and
Kusuba is erroneously taken by some authors as “compound interest” but
“is not mentioned in any Sanskrit mathematical text, even as a hypothetical
case” [472]. The section ends with a few considerations about loans of
commodities found in the administrative and legal texts, prescriptions
mainly of limits on the interest rates that can be applied [472–473].
The authors then analyze the compilation of the model, or sample, docu
ment Lekhapaddhati, composed in the period ca ad 950–1350, when the
Caulukya kings governed Gujarat. Three documents are selected from the
Lekhapaddhati [473–474]. These documents are interesting because they
attest to the fact that the 2% interest rate suggested by the Manusmṛti seems
to have been in common practice in medieval India. Moreover, one of the
documents gives detailed instructions for the recovery of a loan [476].
Sarma and Kusuba bring several pieces of evidence to the idea that limiting
the accumulated interest to the value of the principal, the dāmdupat of
Indian law, dates from the time of the Manusmṛti and is still in practice
in some legal cultures of South Asia, which underlies the importance of
the Manusmṛti [480].
The second part of the chapter is devoted to the same topics that appear in
mathematical and astronomical texts in Sanskrit, including commentaries.
The computation of interest is treated in Bhāskara’s commentary on the
Āryabhaṭa’s presentation of the rule of three in his Āryabhaṭīya. Bhāskara
shows how the rule of three can be applied twice, becoming the rule of five,
to solve problems in which a principal, a time duration, and an interest
are given as arguments, together with another principal and another time
duration, given as required, in order to compute the corresponding interest
[482–484]. The rule of five is also abstractly described by Brahmagupta
in his Brāhmasphuṭasiddhānta, while his commentator Pṛthūdaka offers
examples of its application, for example, by Bhāskara [484–488]. Sarma and
Kusuba note that in these mathematical texts, the interest rate is frequently
5%, and in some other texts it is sometimes even higher, so it is “purely
hypothetical and has no contemporary evidence” [488]. Another concern of
mathematical texts is to calculate the time necessary for the “sum of the
principal and the interest” to become a given multiple of the principal [488].
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The remainder of the chapter covers other types of mathematical problems
involving interest rates that appear in Sanskrit mathematical treatises. One
of them is represented by problems in which one is given the sum or miśra
(mixture) of two of the involved quantities. It is mentioned by several
mathematical texts [489–495].
Sarma and Kusuba close the chapter by noticing that administrative and
legal texts tend to emphasize that interest rates must be fair and that a
loan should not be allowed to accumulate beyond a certain limit (twice the
principal), while mathematical and astronomical texts use bigger interest
rates and also deal with problems in which the principal plus the interest
becomes multiples of the interest. The authors conclude that mathematical
texts cannot be expected to “show any coherent picture” [499] because their
contents “are not based on the actual state of affairs of any period or region,
but on the mathematician’s ingenuity” [499].
Marc Bompaire and Matthieu Husson’s “Computational Practices around
Coins and Coinage: John of Murs’ Quadripartitum numerorum and French
Money Changers’ Books” [ch. 13] is the only chapter of the book bearing
on European medieval mathematics. The authors focus on the mathematics
related to coins and coinage, and state that similar practices were common
in several environments of medieval Europe, the three most important
being those of:

(1) moneyers, money changers, mint wardens, and mint masters;
(2) merchants dealing with coins as goods; and
(3) scholars with an interest in mathematics who were connected

(a) sometimes to merchants and
(b) sometimes to faculties of arts.

Bompaire and Husson’s goal is to compare the calculation practices related
to coins and coinage as found in (1) and (3b) [504].
The sources for the mathematics of coins and coinages of scholars related to
the faculties of arts are represented in the section of John of Murs’ Quadri
partitum numerorum (1343) on money, De monetis. The sources for the
study of the calculative practices of moneyers and associated practitioners
are three manuscripts:

∘ the literary BnF Arsenal 8315, which contains annotations on money
changing dating to 14thcentury southern France (Montolieu);

∘ BnF Fr. 5917, produced by money changers or mint wardens, dating
to ca 1420 in northern France (possibly Normandy); and
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∘ BnF nouv. acq. Fr. 471, reflecting the practice of a royal mint warden
and produced ca 1466 possibly near La Rochelle [504–505].

Bompaire and Husson start their comparison of the two milieux with the
respective approaches to metrology. In De monetis, metrology is simple:
the marc is a unit measure of weight, and it is made of 12 deniers, where
a denier is made up of 24 grains [505–506]. On the other hand, the analysis
of the manuscripts from the money changers’ milieu reveals that, besides
the units of measure for weight, there was a metrological system devised to
measure the quantity of silver in an alloy, using the same term, “denier”:

12 deniers of alloy corresponds to a type of money made entirely of silver. 6
deniers of alloy correspond to a type of money with equal amounts of silver
and copper. These deniers were further divided into 24 grains. [507]

This “manifold metrology” [507] was put into action in calculations in which
the language used suggests that an abacus was used; and the conversions
between the different units are represented in tables, called comptes faits, to
make the conversion easier [508–510].
In the following sections, the authors describe two techniques used by
money changers to assess the alloy of a large number of coins of different
metal composition: the common money [511] and the differences methods
[515]. The explanation of these methods would go into detail that is not
necessary here, but it must be said that in both the money changers preceded
their calculations by mixing the coins and sampling them. The calculations
were then performed on the sample, which was considered representative
of all the money.
Bompaire and Husson also provide examples of the common money and
differences methods from John of Murs’ De monetis [513, 518]. The main
distinction of the money changers’ practice is that they are not applied to
a sample of the money. Indeed, no sampling is made. Another important
difference is that the money changers’ calculations were apparently designed
to be made in one’s head, since they proceeded step by step with tight
control of the nature of the numbers involved. Bompaire and Husson chose
examples from John of Murs [510–521] that were in the context of another
problem faced by money changers, that of changing the alloy of a coin or
set of coins, the subject of the penultimate section of the chapter.
Money changers dealt with the problem of changing the alloy of money
by adding pure metal to a mix, but this was seen as a solution of last resort
because of the difficulty and cost of obtaining pure metals. The money
changers’ method was to calculate the alloy that, when mixed in equal
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quantity with the given money, would produce the desired new alloy and
then to calculate via fractions and comptes faits the amount of pure metal
that would produce the same effect. This is completely different from the
procedure John of Murs proposes in similar situations: he works mainly
with rules of three and with the introduction of a new quantity, the weight
of the mix [525–526].
Bompaire and Husson close the chapter by reviewing the points of compari
son and indicating that they “show two cultures of computation confronted
in different ways and to greater and lesser extents by different aspects of the
same reality”, [529] being “shaped by different values” [529] according to
the different milieux to which they belonged.

3. Final remarks
The book does not have a general concluding chapter. Instead, it is the
introduction [ch. 1] that summarizes the main results, many of which have
been discussed above, especially with regard to the disunity of mathematics
and its constitutive role in society.
It remains to be said, however, that Mathematics, Administrative and Eco
nomic Activities in Ancient Worlds may be considered a starting point for
similar research in that it presents specific points to keep in mind when com
paring mathematical knowledge and practices from different milieux or dif
ferent cultures of computation and quantification, points such as “the math
ematical problems actors addressed”, the terminology, the number systems,
“the material environments they shaped to carry out quantification and
computation”, the “actors’ expectations regarding the answers they wanted
to obtain” and “their aspirations regarding the procedures they wanted to
use” [5], as well as epistemological and professional values [43–44].
In addition, each chapter opens up uncountable avenues of research by
pointing out issues that can be developed further and questions that still
deserve treatment. Some of these avenues of research are indicated above in
my summaries of the chapters, but there are many others.
In relation to that, as a historian of cuneiform mathematics, it would be
unfair on my part not to add that the seven chapters of the book that deal
specifically with cuneiform mathematical texts establish exciting new pos
sibilities of research in at least two major directions, besides those that
have already been presented. The first concerns the form and purpose of
mathematics education in Mesopotamia, a subject vastly explored in the As
syriological literature [e.g., in Robson 2002 and 2004; Proust 2007 and 2008].
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The second focuses on the technical aspects of cuneiform mathematics
and its sociohistorical development, equally a central theme for historians
working in this field [e.g., Robson 1999 and 2008; Høyrup 2002; Friberg
2000 and 2007; Friberg and alRawi 2016; Chambon 2011].
The book has typos and minor errors, which do not impede understanding
but may deserve correction in a second edition.
In sum, the book is part of a long conversation about the diverse richness of
the ancient mathematical traditions, or rather cultures of computation and
quantification. On a very general historiographic level, it is a tributary of the
idea that unifying narratives are, if not altogether flawed, at least problem
atic. On a very specific level, it is the consequence of the specialties of each
contributor taking part in the collective and collaborative research initiative
that was the SAW Project. It is an uptodate window on what currently
advances the historiography of ancient mathematics and, therefore, a work
that I recommend without any shadow of doubt.
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