L'Actualité économique

L'ACTUALITÉ ÉCONOMIQUE

REVUE D'ANALYSE ÉCONOMIQUE

« Modèle de régression avec variables d'écart » : réponse aux commentaires du professeur Loranger

Marcel Dagenais

Volume 50, numéro 4, octobre-décembre 1974

URI: https://id.erudit.org/iderudit/803073ar DOI: https://doi.org/10.7202/803073ar

Aller au sommaire du numéro

Éditeur(s)

HEC Montréal

ISSN

0001-771X (imprimé) 1710-3991 (numérique)

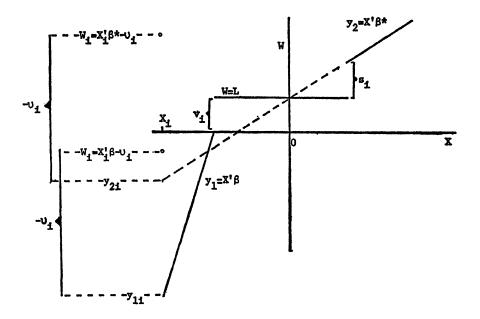
Découvrir la revue

Citer ce document

Dagenais, M. (1974). « Modèle de régression avec variables d'écart » : réponse aux commentaires du professeur Loranger. L'Actualité économique, 50(4), 596–597. https://doi.org/10.7202/803073ar

Tous droits réservés © HEC Montréal, 1974

Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter en ligne.


https://apropos.erudit.org/fr/usagers/politique-dutilisation/

RÉPONSE AUX COMMENTAIRES DU PROFESSEUR LORANGER

Le professeur Loranger me demande d'illustrer plus explicitement la nature de la contradiction qui pourrait découler du fait de concevoir un modèle à seuils de réaction où les droites de régression, situées de part et d'autre de la valeur limite L, auraient des pentes différentes. La démonstration peut se faire graphiquement à partir d'une figure analogue à celle présentée par le professeur Loranger dans l'article paru dans le numéro de L'Actualité Economique d'avril-juin dernier.

Considérons, dans le graphique 1, la valeur de X représentée, sur l'abscisse, par X_i , à gauche de l'ordonnée.

Si, aux valeurs y_{1i} et y_{2i} correspondant à X_i , on ajoute la même erreur résiduelle : $-v_i$, on obtient une valeur de X_i' $\beta - v_i$ qui est inférieure à $L - v_i$ et une valeur de X_i $\beta^* - v_i$ qui est supérieure à $L + s_i$. Il faudrait donc que l'observation en question fasse partie à la fois du groupe 1 et du groupe 2, ce qui est contradictoire.

Le professeur Loranger note, par ailleurs, que lorsque j'ai affirmé que son modèle implique a priori que $\rho=0$, je n'ai pas tenu compte de la contrainte de non-négativité imposée sur s_i . En cela, il a parfaitement raison ; mais si je n'ai pas tenu compte de cette non-négativité, c'est que lui-même n'en avait pas tenu compte non plus, lorsqu'il a affirmé à la page 184 (ligne 28) de son article, que $E(\eta_i)=0$. En fait, si $s_i \ge 0$, la distribution de η_i sera tronquée et on aura vraisemblablement $E(\eta_i)>0$. Il semble donc qu'une correction possible soit de remplacer $E(\eta_i)=0$ par $E(\eta_i)>0$.

Enfin, le professeur Loranger mentionne que le dernier point de mon argumentation devrait m'entraîner à rejeter non seulement son modèle mais aussi le modèle de Goldfeld et Quandt. Je ne crois pas que cela soit le cas, puisque dans le modèle de Goldfeld et Quandt, la variable D_i n'est pas de même nature que dans le modèle de Loranger. Pour Loranger, la variable D_i , qui dépend de X_i , est une variable aléatoire, puisque X_i est supposé exogène et aléatoire, alors que chez Goldfeld et Quandt, les D_i sont fonction d'une variable exogène non stochastique. La solution alternative à suggérer serait peut-être que le professeur Loranger reconsidère son modèle en supposant que X_i est exogène et non stochastique.

Terminons en rappelant qu'un des grands avantages de l'utilisation des modèles, en science, c'est que les modèles sont perfectibles!

Marcel DAGENAIS, Université de Montréal.