
All rights reserved © Preeminent Academic Facets Inc., 2007 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 30 jan. 2025 08:05

Algorithmic Operations Research

“Binarize and Project” to generate cuts for general
mixed-integer programs
Jean-Sébastien Roy

Volume 2, numéro 1, summer 2007

URI : https://id.erudit.org/iderudit/aor2_1art05

Aller au sommaire du numéro

Éditeur(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (numérique)

Découvrir la revue

Citer cet article
Roy, J.-S. (2007). “Binarize and Project” to generate cuts for general
mixed-integer programs. Algorithmic Operations Research, 2(1), 37–51.

Résumé de l'article
We consider mixed-integer linear programs with arbitrary bounded integer
variables. We first describe a cutting plane approach based on the
reformulation of integer variables into binary variables and describe a
practical algorithm to compute these cuts for the original problem. We use the
term “Binarize and Project” to highlight the similarity to the back onto the
original space. Indeed, the interest of this approach lies in taking advantage of
cutting plane approaches efficient for mixed-binary problems while keeping
the problem in its non-binary form for improving the efficiency of the
branch-and-bound procedure.
We then propose a new strengthened reformulation into binary variables that
answers some concerns and limitations raised in [9], by ensuring that only one
application of the lift-and-project convexification procedure to the binary
reformulation of the problem is required to obtain a strengthening of the
original problem.
Finally, the method is implemented inside the COIN optimization library and a
preliminary experimentation is performed on problems from the MIPLIB
library. The computational results confirm that the use of the proposed binary
reformulation and cutting plane generation procedure leads to an improved
integrality gap reduction albeit with an increased computing time.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/aor/
https://id.erudit.org/iderudit/aor2_1art05
https://www.erudit.org/fr/revues/aor/2007-v2-n1-aor_2_1/
https://www.erudit.org/fr/revues/aor/

Algorithmic Operations Research Vol.2 (2007) 37–51

“Binarize and Project” to generate cuts for general mixed-integer programs

Jean-Sébastien Roya

a1, avenue du Général de Gaulle, 92141, Clamart, Cedex, France.

Abstract

We consider mixed-integer linear programs with arbitrary bounded integer variables. We first describe a cutting plane
approach based on the reformulation of integer variables into binary variables and describe a practical algorithm to
compute these cuts for the original problem. We use the term “Binarize and Project” to highlight the similarity to the lift-
and-project idea of lifting the problem to a higher dimensional space to generate cutting planes which are then projected
back onto the original space. Indeed, the interest of this approach lies in taking advantage of cutting plane approaches
efficient for mixed-binary problems while keeping the problem in its non-binary form for improving the efficiency of the
branch-and-bound procedure.

We then propose a new strengthened reformulation into binary variables that answers some concerns and limitations
raised in [9], by ensuring that only one application of the lift-and-project convexification procedure to the binary
reformulation of the problem is required to obtain a strengthening of the original problem.

Finally, the method is implemented inside the COIN optimization library and a preliminary experimentation is
performed on problems from the MIPLIB library. The computational results confirm that the use of the proposed binary
reformulation and cutting plane generation procedure leads to an improved integrality gap reduction albeit with an
increased computing time.

Key words: Binary reformulation, Cutting planes generation, Lift-and-project.

1. Introduction

We consider mixed-integer linear programming prob-
lems of the form:

min
(x,y)∈(S∩Zn)×Rp

dx + ey s.t. Ax + By ≥ c (1)

whered ∈ Rn, e ∈ Rp, A ∈ Rq×n, B ∈ Rq×p, c ∈ Rq,
q ∈ N∗, n ∈ N∗, p ∈ N∗ and without loss of generality,
we suppose that the variablesx are nonnegative and
bounded, i.e.,S = [0, b1]× . . .× [0, bn], with b ∈ N∗n.
We denoteP = { (x, y) ∈ S × Rp|Ax + By ≥ c}, the
solution set of the continuous relaxation of the problem.
Elements ofP that satisfy the integrity requirements of
problem (1) onx will be called mixed-integer solutions.

In order to reduce the size of the tree generated in
a branch-and-cut algorithm, cutting planes are used to
strengthen the continuous relaxation of these problems.
One cutting plane approach, the so-called lift-and-
project[1] sequential convexification procedure, con-
sists in calculating the convex hull of the two polyhedra

Email: Jean-Sébastien Roy [jean-sebastien.roy@edf.fr].

given by a simple disjunction on any binary variablexi:

conv ({P ∩ {xi = 0}} ∪ {P ∩ {xi = 1}})

This step is repeated on the newly calculated polyhe-
dron as many times as desired. In theory, when all the
variablesx are binary, this method leads, within a fi-
nite number of steps, to the convex hull of the mixed-
integer solutions to the problem (see [1]). In practice,
only a few facets of this polyhedron are generated to
strengthen the problem.

On the contrary, when the variablesx are general
(bounded) integers, the sequential convexification pro-
cedure converges to the convex hull of mixed-integer
solutions only in the limit[8], and this is precisely why
is it reasonable to expect improved computational effi-
ciency from the use of binary reformulations.

Indeed, when the integer variablesx are not restricted
to binary values but are bounded, it is possible to refor-
mulate the problem in various ways into an equivalent
problem where all integer variables, denotedz, are 0-1
constrained, leading to problems of the form:

min
(z,y)∈{0,1}m×Rp

dTz+ey s.t. ATz+By ≥ c, Dz ≥ 0

(2)

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.

38 Jean-Sbastien Roy – Binarize and Project

whereT ∈ Rn×m is a mapping such thatx = Tz,
andD ∈ Rn×q is a constraint matrix involving thez
variables only. Various possible choices forT and D
will be discussed in section 2. below.

While it is possible, after strengthening the relaxation
by applying cutting planes, to use branch-and-bound to
solve this transformed mixed-binary problem (2), the
discussion found in [9] strongly suggests that this pro-
cess may be inefficient. It seems therefore interesting,
after applying cutting plane approaches to the trans-
formed problem (2), to translate back the resulting in-
equalities to the initial problem (1) to which branch-
and-bound will be hopefully more efficiently applied.

The main goal of this paper is to propose, for gen-
eral mixed-integer problems, a method to perform this
translation in practice and thus take advantage of cut-
ting plane algorithms available and efficient on mixed-
binary problems, while still using the branch-and-bound
method on the original problem. For this purpose, we
present a suitable reformulation into binary variables as
well as a procedure that generates cuts on the original
problem from a strengthening of the binary reformu-
lation of the problem. The proposed reformulation an-
swers some concerns and limitations raised in [9], by
ensuring that only one application of lift-and-project to
the binary reformulation of the problem is required to
obtain a strengthening of the original problem.

We observe here that our approach is similar in spirit
to the main idea of lift-and-project, in which a mixed-
binary problem is reformulated in a higher dimensional
space where the integrality is more efficiently expressed
in terms of a strengthened polyhedron (the term “Bina-
rize and Project” suggests this connection). This poly-
hedron is then projected back onto the original space
by finding inequalities, valid in the higher dimensional
space, and at the same time naturally translated to the
original space. In our scheme, the higher dimensional
space corresponds to a specific binary reformulation of
a mixed-integer problem on which any type of cut can
be used to express integrality.

Remark that while our goal is to show that the bi-
nary reformulation can be used to reduce the integrality
gap for some problems, this improvement comes with a
price, namely an increase of the size of the problems on
which cutting plane algorithms must be applied. In this
paper, we do not address the computational efficiency
in detail. Some suggestions are provided at the end of
section 6., but this question requires extensive work and
should be the subject of further research.

This paper is organized as follows. We present in

section 2. the reformulations considered and the basic
results justifying the use of a subset of the inequali-
ties valid for the reformulated problem to generate in-
equalities valid for the original problem; we also char-
acterize when strengthening the reformulated problem
will lead to separating inequalities in the original one.
A practical methodology is described in section 3.. We
then present in section 4. the main result highlighting
the better efficiency of our proposed binary reformula-
tion as compared with other classical binary reformu-
lations. Two small examples comparing various refor-
mulations into binary variables are presented in section
5.. Computational results obtained from a preliminary
implementation of the cut generation method through
binary reformulation, applied to MIPLIB problems, is
provided in section 6.. Finally, the concluding section
provides some comments concerning the interest of the
proposed approach.

2. Basis of the proposed method

We are looking for the convex hull of the solutions
(x, y) ∈ (S ∩ Zn) × Rp of the mixed-integer problem
(1) with general bounded integer variablesx. We de-
scribe in this section the proposed reformulation, dis-
cuss the extent to which it yields the expected convex
hull, and characterize when we will be able to generate
cutting planes from a binary reformulation of a problem.

Let I = (Zn × Rp) ∩ P denote the solution
set of the mixed-integer problem. We want to de-
scribe or at least approximateP ′ = conv (I).
As the convex hull of a finite number of polyhe-
dra, P ′ is a polyhedron, so∃ (A′, B′, c′) such that
P ′ = { (x, y) ∈ S × Rp|A′x + B′y ≥ c′}.

We now reformulate the integer variablesx of the
polyhedronP to generate an equivalent polyhedronP01

for which the integer variables are binary. The follow-
ing definition encompasses the class of reformulations
we are interested in. A few examples including our sug-
gestion will follow.

Definition 1. (Reformulation into binary variables). We
consider the reformulation of integer variablesx ∈ S ∩
Zn into binary variablesz ∈ {0, 1}m, m ∈ N, given
by the formulax = Tz, with the constraintsDz ≥ 0,
whereT ∈ Zn×m andD ∈ Rn×q. The reformulations
must satisfy the following rules:

(1) ∀x ∈ S, ∃z ∈ [0, 1]m such thatx = Tz and
Dz ≥ 0. z is said to be associated withx for the
chosen reformulation.

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 39

(2) ∀x ∈ S ∩ Zn, ∃z ∈ {0, 1}m such thatx = Tz
andDz ≥ 0. z is said to be canonically associated
with x for the chosen reformulation.

(3) ∀z ∈ {0, 1}m such thatDz ≥ 0, Tz ∈ S ∩ Zn.
Examples of such reformulations1 include the compact
reformulation proposed by Owen-Mehrotra in [9]:

Definition 2. (Owen-Mehrotra, compact reformula-
tion) Let li = ⌊log2 bi⌋. We reformulate the vari-
ablesxi ∈ {0, . . . , bi} using xi =

∑li
j=0 2j · zj

i with

∀j ∈ {0, . . . , li} , zj
i ∈ {0, 1} and the constraints

∑li
j=0 2j · zj

i ≤ bi if
∑li

j=0 2j > bi.

And the reformulation proposed by Sherali-Adams in
[10]:

Definition 3. (Sherali-Adams, non-compact reformula-
tion) We reformulate variablesxi ∈ {0, . . . , bi} using
xi =

∑bi

j=1 j · zj
i with ∀j ∈ {1, . . . , bi} , zj

i ∈ {0, 1}

and the constraints
∑bi

j=1 zj
i ≤ 1.

In addition to the above, we suggest an alternative
reformulation which will be extensively discussed in the
sequel:

Definition 4. (The proposed, strong non-compact re-
formulation into binary variables) The suggested refor-
mulation defines for each componentxi ∈ {0, . . . , bi}
of x, i ∈ {1, . . . , n}, a set of binary variableszj

i ∈

{0, 1} wherej ∈ {1, . . . , bi} such thatxi =
∑bi

j=1 zj
i .

Moreover, this reformulation is strengthened by includ-
ing a set of constraints onz: ∀i ∈ {1, . . . , n}, ∀j ∈
{1, . . . , bi − 1}, zj

i ≥ zj+1
i . Adding such ordering con-

straints in this reformulation, while not strictly neces-
sary, significantly reduces the feasible space forz by
breaking the symmetry and eliminating redundant bi-
nary representations of some integers, and will improve
the efficiency of the cutting plane algorithms applied to
the reformulated problem (see section 4.).

We denote

z =
[

z1
1 , . . . , zj

1, . . . , z
b1
1 , z1

2 , . . . , z
j
i , . . . , z

bn

n

]

∈ [0, 1]
m

with m =
∑n

i=1 bi. With eachx ∈ S, we associate
z = ϕ (x) ∈ [0, 1]

m such thatzi
j = 1 if j ≤ ⌊xi⌋,

zi
⌊xi⌋+1 = xi−⌊xi⌋ if ⌊xi⌋+ 1 ≤ bi andzi

j = 0 if j >

⌊xi⌋+1, i.e.,z = [1, . . . , 1, xi − ⌊xi⌋ , 0, . . . , 0, 1, . . .].
HenceTz = x. Moreover, we note thatx ∈ S ∩ Zn

if and only if z ∈ {0, 1}m. We remark that for this
reformulation, and for allx ∈ S ∩ Zn, z canonically

1 For all the following reformulations, the structure of ma-
tricesT andD is straightforward.

associated withx (see definition 1) is unique and equal
to ϕ (x).

Remark 1 We will call “weak non-compact reformu-
lation”, the previous reformulation with the ordering
constraints removed, i.e.,D = 0.
In the rest of the present section, we consider any re-
formulation complying with the general definition 1.

Definition 5. (Reformulation of a polyhedron) ForP =
{ (x, y) ∈ S × Rp|Ax + By ≥ c}, we denote byP01 =
{ (z, y) ∈ [0, 1]

m × Rp|ATz + By ≥ c, Dz ≥ 0} the
polyhedron of the constraints of the problem in the
transformed variables space;I01 = (Zm × Rp) ∩ P01,
the mixed-integer solution set of the transformed prob-
lem and P ′

01 = conv (I01) the convex hull of the
mixed-integer solutions.

Example 1 Let P = {(x1, x2, y) ∈ R3
+|y ≤ 3x1, y ≤

3x2, 3x1 + 3x2 + 2y ≤ 6}. Note that the variablesx1

and x2 are implicitly upper bounded by2. Then, for
the proposed strong non-compact reformulation,P01 is
defined, for

(

z1
1 , z

2
1 , z1

2 , z
2
2 , y

)

∈ [0, 1]4 × R+, by the
following equations :

y ≤ 3
(

z1
1 + z2

1

)

y ≤ 3
(

z1
2 + z2

2

)

3
(

z1
1 + z2

1

)

+ 3
(

z1
2 + z2

2

)

+ 2y ≤ 6
z1
1 ≥ z2

1

z1
2 ≥ z2

2

Let V = {(α, β, γ ∈ Rn × Rp × R|αTz + βy ≥
γ is an inequality valid forP ′

01}, the set of the coeffi-
cients of inequalities valid forP ′

01 such that the coeffi-
cients of the variableszj

i take the formαT . These in-
equalities can be translated into inequalities of the form
αx + βy ≥ γ defined on the initial space.
Remark 2 If the strong non-compact reformulation is
used, for eachi, the coefficients of the variableszj

i for
the inequalities inV , are equal for allj = 1, . . . , bi.
LetC =

⋂

(α,β,γ)∈V {(x, y) ∈ S × Rp|αx + βy ≥ γ},
the intersection of all inequalities translated in this way.
We now formulate the simple result justifying the use
of cutting planes belonging toV to generate cutting
planes in the original space.
Proposition 3 C = P ′, i.e., the inequalities built from
the transformed problem define the convex hull of the
mixed-integer solutions to the initial problem.

Proof: Let us begin by proving thatC ⊆ P ′. Let αx+
βy ≥ γ be an inequality valid forP ′. We will prove
that it is valid forC by showing that(α, β, γ) ∈ V . By
contradiction, suppose(α, β, γ) /∈ V . So,∃ (z′, y′) ∈

40 Jean-Sbastien Roy – Binarize and Project

I01, αT z′ + βy′ < γ. Let x′ = Tz′ ∈ S ∩ Zn, hence
Ax′+By′ = ATz′+By′ ≥ c. Therefore(x′, y′) ∈ I ⊆
P ′ andαx′ + βy′ < γ which is inconsistent. Therefore
(α, β, γ) ∈ V andαx + βy ≥ γ is valid for C.

Let us now prove thatC ⊇ P ′. ∀ (x′, y′) ∈ I, letz′ be
the 0-1 solution canonically associated withx′ for the
reformulation under consideration, i.e.,z′ ∈ {0, 1}m

such thatTz′ = x′ andDz′ ≥ 0. HenceAx′ + By′ =
ATz′+By′ ≥ c, and(z′, y′) ∈ I01. Hence∀ (α, β, γ) ∈
V , αx′ + βy′ = αTz′ + βy′ ≥ γ, and (x′, y′) ∈ C.
Finally, I ⊆ C andP ′ = conv (I) ⊆ conv (C) = C.

Therefore, we have proved that the setV of inequalities
valid for the polyhedronP ′

01, of the formαTz+βy ≥ γ
, which can be easily reformulated into inequalitiesαx+
βy ≥ γ valid for the polyhedronP ′, are sufficient to
defineP ′. We remark that thanks to the lift-and-project
sequential convexification procedure, and contrary to
the disjunctions discussed in [8], a description of the set
V of these inequalities can be obtained within a finite
number of steps.

We will use the projection result of proposition 3
to design a cutting plane algorithm. When trying to
separate a point(x′, y′) from P ′, we will reformulateP
into P01, strengthenP01 using cutting planes to obtain
a polyhedronP̂01, and try to find an inequality of the
form αTz + βy ≥ γ that separates from̂P01 some
(z′, y′) such thatx′ = Tz′ andDz′ ≥ 0. The following
result helps characterize whenαz+βy ≥ γ could be an
inequality separating(x′, y′) from P ′. Finding such an
inequality when it exists will be the subject of the next
section, while ensuring that the conditions required by
the following proposition are met, by means of a specific
binary reformulation, will be the subject of section 4..
Proposition 4 Let (x′, y′) ∈ S × Rp be such that
(x′, y′) /∈ P ′, and P̂01 the polyhedronP01 strength-
ened using cutting planes (henceP ′

01 ⊆ P̂01).
Let E = {(z, y)|x′ = Tz, Dz ≥ 0, y′ = y}. If
E ∩ P̂01 = ∅, then there exists an inequality of the
form αTz + βy ≥ γ that separatesE from P̂01 and
the inequalityαx + βy ≥ γ separates(x′, y′) from P ′.

Proof: LetP ∗ = {(Tz, y)}(z,y)∈P̂01
denote the projec-

tion of P̂01 onto the original space, andP ∗
01 its binary

reformulation (see definition 5). AssumingE∩P̂01 = ∅,
(x′, y′) /∈ P ∗, therefore letαx + βy ≥ γ be an in-
equality separating(x′, y′) from P ∗. SinceP ′

01 ⊆ P̂01,
P ′ ⊆ P ∗ and we deduce thatαx + βy ≥ γ also sepa-
rates(x′, y′) fromP ′. Hence,∀ (z, y) ∈ E, αTz+βy =
ax′+βy′ < γ. Moreover,∀ (z, y) ∈ P ∗

01, (Tz, y) ∈ P ∗

henceαTz +βy ≥ γ . Therefore,αTz +βy ≥ γ sepa-
ratesE from P ∗

01, and sinceP̂01 ⊆ P ∗
01, αTz +βy ≥ γ

separatesE from P̂01.

3. Cut generation through binary reformulation

In this section, we will discuss precisely how to
use a binary reformulation to generate cutting planes.
Throughout this section, the discussion is intended to
remain general, i.e., to apply to any binary reformula-
tion complying with definition 1. Let(x′, y′) ∈ P be
such that(x′, y′) /∈ P ′. We assumeP ′ 6= ∅ and try to
build an inequality separating(x′, y′) from P ′.

Let z′ ∈ [0, 1]m associated withx′ (see definition 1).
Thenx′ = Tz′, andz′ /∈ {0, 1}m because(x′, y′) ∈ P
and (x′, y′) /∈ P ′ implies x′ /∈ Zn, and sinceT ∈
Zn×m, z′ ∈ {0, 1}m would imply x′ ∈ Zn. Hence
z′ ∈ P01 and sincez′ /∈ {0, 1}m, we havez′ /∈ P ′

01. It is
therefore possible to build valid inequalities separating
z′ from P ′

01.
After having generated a number of valid inequalities

separating(z′, y′) from P01 we add them toP01 to
obtain a new polyhedron̂P01 such thatP01) P̂01 ⊇
P ′

01, and such that(z′, y′) /∈ P̂01. Let Â ∈ Rk×m,
B̂ ∈ Rk×p and ĉ ∈ Rk be such that:

P̂01 =
{

(z, y) ∈ Rm × Rp
∣

∣

∣
Âz + B̂y ≥ ĉ

}

In order to obtain an inequality separating(x′, y′)
from P ′, we can, for example, solve the following prob-
lem:

min
(u,v)∈R

k
+
×Rn

u
(

Âz′ + B̂y′ − ĉ
)

(3)

s.t. uÂ = vT,
∑

k

uk ≤ 1

(Throughout the paper,u andv are row vectors.)
We remark that this problem is well defined sinceu is

bounded, so the objective function is bounded too, and
u = v = 0 is a solution. This problem consist in finding
an inequality valid forP̂01 as a nonnegativecombination
u of the inequalities of the system̂Az + B̂y ≥ ĉ defin-
ing P̂01, by maximizing the distance between(z′, y′)
and the half space defined by the valid inequality, in

the sense of the distance−u
(

Âz′ + B̂y′ − ĉ
)

, while

ensuring, through the constraintuÂ = vT , that the in-
equality can be reformulated as an inequality valid for
P ′, that is, if the strong non-compact reformulation is
used, whose coefficients for variableszj

i are equal for
all j. These coefficients define the coefficients of vari-
ablesxi for the inequality sought after.

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 41

Remark 5 Multiple formulations of problem (3.) can
be obtained by either changing the normalization con-
straint on u or removing the upper bound onu and
using as the solution a primal ray from the now un-
bounded problem. For simplicity of exposition, we will
only consider theL1 normalization constraint.
Proposition 6 Let (u, v) be an optimal solution to
problem (3.). Thenvx + uB̂y ≥ uĉ is an inequality

valid for P ′. Moreover, if u
(

Âz′ + B̂y′ − ĉ
)

< 0,

vx + uB̂y ≥ uĉ separates(x′, y′) from P ′.

Proof: Let (x′′, y′′) ∈ I, andz′′ canonically associated
with x′′. Thereforex′′ = Tz′′ and(z′′, y′′) ∈ I01. Since
uÂz + uB̂y = vT z + uB̂y ≥ uĉ is a nonnegative
combination of the inequalities defininĝP01, it is a valid
inequality for P̂01 and is therefore also valid forP ′

01.
Hencevx′′ +uB̂y′′ = vT z′′+uB̂y′′ ≥ uĉ as required.

If u
(

Âz′ + B̂y′ − ĉ
)

< 0, vx′ + uB̂y′ = vT z′ +

uB̂y′ = uÂz′ + uB̂y′ < uĉ and the inequalityvx +
uB̂y ≥ uĉ separates(x′, y′) from P ′.

Algorithm 1 below summarizes the procedure.

Step 1: Let (x′, y′) ∈ P assumed to be such that
(x′, y′) /∈ P ′.

Step 2: Compute z′ ∈ [0, 1]
m associated withx′

(z′ /∈ {0, 1}m) (see definition 1).

Step 3: Compute one or more cuts separatingz′

from P ′
01. By combining them withP01, we obtain

P̂01 =
{

(z, y) ∈ Rm × Rp
∣

∣

∣
Âz + B̂y ≥ ĉ

}

.

Step 4: Solve the cut projection problem (3) and let
(u, v) be an optimal solution to it:

min
(u,v)∈R

k
+
×Rn

u
(

Âz′ + B̂y′ − ĉ
)

s.t. uÂ = vT,
∑

k

uk ≤ 1 (3)

Step 5: If u
(

Âz′ + B̂y′ − ĉ
)

< 0 then,vx+uB̂y ≥

uĉ is valid for P ′ and separates(x′, y′) from P ′.

Algorithm 1. Generation of an inequality separating(x′, y′)
from P ′ = conv ((Zn × Rp) ∩ P)

Remark 7 In algorithm 1,u
(

Âz′ + B̂y′ − ĉ
)

is not

always strictly negative. For example, as detailed in [9],
if either the compact reformulation of Owen-Mehrotra
or the non-compact reformulation of Sherali-Adams is
used on some polyhedra, performing disjunctions on
some binary variables may lead to a strictly smaller
polyhedron which nevertheless, once projected back to
the original space, is identical to the original polyhe-
dron. Section 5. provides two such examples. In these
cases,(x′, y′) belongs to the projected polyhedron, and

thereforeu
(

Âz′ + B̂y′ − ĉ
)

= 0.

Nevertheless, we will show in section 4. that for the
strong non-compact reformulation, and under appropri-
ate assumptions, the procedure always generates a sep-
arating hyperplane.

The following result characterizes the cases where
the inequality generated will be separating.

Proposition 8 Let E = { (z, y)|x′ = Tz, Dz ≥ 0, y′

= y}. The generated inequalityvx + uB̂y ≥ uĉ sepa-
rates(x′, y′) from P ′ if and only ifE ∩ P̂01 = ∅.

Proof: Suppose that the inequalityvx + uB̂y ≥ uĉ
separates(x′, y′) from P ′, then∀z such thatx′ = Tz,
vx′ + uB̂y′ = vT z + uB̂y′ = uÂz + uB̂y′ < uĉ.

Moreover,u
(

Âz + B̂y − ĉ
)

≥ 0, being a nonnegative

combination of the inequalities defininĝP01, is an in-
equality valid forP̂01. Therefore,uÂz + uB̂y′ < uĉ
implies (z, y′) /∈ P̂01.

Conversely, from proposition 4, there exists an in-
equality of the formαTz + βy ≥ γ that separates
E from P̂01. Therefore it existsu∗ ∈ Rk

+, u∗ 6= 0,

such that(αT, β, γ) = u∗
(

Â, B̂, ĉ
)

. Let ū =
∑

k u∗
k,

u′ = u∗

ū
andv′ = α

ū
: (u′, v′) ∈ Rk

+ ×Rn,
∑

k u′
k ≤ 1,

u′Â = u∗Â
ū

= αT
ū

= vT andu′
(

Âz′ + B̂y′ − ĉ
)

=

αTz′+βy′−γ
ū

< 0. We conclude using proposition 6.

In optimization problems such as (1), the cutting plane
generation algorithm will generally be decomposed in
two phases. First the binary expansionP01 is generated
and strengthened using cutting plane approaches. Then
the cutting plane projection problem (3) is repeatedly
solved to generate cutting planes to strengthen the re-
laxation in the original space until the optimum of this
relaxation cannot be cut off. Let again̂P01 denote the
polyhedron obtained after applying valid inequalities to

42 Jean-Sbastien Roy – Binarize and Project

P01 and
min

(x,y)∈S×Rp
dx + ey (4)

s.t. Ax + By ≥ c

the continuous relaxation of problem (1). Ideally, we
would like to projectP̂01 onto the original space but this
would be too computationally expensive. As an alterna-
tive, we project part of the inequalities defining it and
use them to strengthen the polyhedronP . We project
as many inequalities as needed to ensure that the opti-
mum over the strengthenedP belongs to the projection
of P̂01. Therefore, upon termination, both the strength-
ened original and strengthened reformulated problems
will have the same optimal value.

More precisely, we try to separate the optimum of the
continuous relaxation (4), using a cutting plane gener-
ated by solving the cut projection problem (3). If a sep-
arating inequality is generated, it is added to the con-
straints of the continuous relaxation. The procedure is
repeated until no separating inequality is generated. Al-
gorithm 2 describes the proposed cutting plane gener-
ation procedure in a mixed-integer linear programming
optimization context.

If the inequalities generated by solving problem (3)
are facets of the projection of̂P01 by T (which is
ensured by a proper normalization constraint, see for
instance [1,4]), then algorithm 2 terminates after a fi-
nite number of steps.

4. Using the strong non-compact reformulation in
binary variables

In this section we show how the choice of a specific
reformulation can provide a decisive advantage to the
practical application of the method as compared with
other binary reformulations. We will show that contrary
to the general case, when using the strong non-compact
reformulation (see definition 4), algorithm 1 always
generates a separating cutting plane, which makes this
algorithm potentially interesting in practice. As shown
in the next section on a few examples, this property is
not shared by the other suggested binary reformulations.

Let (x′, y′) be a vertex ofP such that(x′, y′) /∈ P ′.
Similarly to the previous section, we try to build an
inequality valid forP ′ separating(x′, y′) from P ′.
Proposition 9 Assume that the binary reformulation
used is the strong non-compact reformulation (defini-
tion 4), and the point(x′, y′) to separate is a vertex of

Step 1: StrengthenP01 using cutting planes to obtain
a polyhedronP̂01. Usually, P01 is strengthened by
repeatedly adding cutting planes separating the opti-
mum of the objective functiondTz + ey over it from
P ′

01.
Step 2: Let (x′, y′) ∈ P be an optimum solution to the

continuous relaxation (4).
Step 3: Computez′ ∈ [0, 1]

m associated withx′ (z′ /∈
{0, 1}m) (see definition 1).

Step 4: Solve the cut projection problem (3) and let
(u, v) be an optimal solution to it:

min
(u,v)∈R

k
+
×Rn

u
(

Âz′ + B̂y′ − ĉ
)

s.t. uÂ = vT,
∑

k

uk ≤ 1 (3)

Step 5: If u
(

Âz′ + B̂y′ − ĉ
)

= 0, the algorithm ter-

minates.
Step 6: StrengthenP using the inequalityvx+uB̂y ≥

uĉ valid forP ′, and go to step 3.. In practice, only the
cuts that are tight at the optimum of the strengthened
P are kept, which does not deteriorate the value of
strengthened relaxation.

Algorithm 2. Cut generation in a MILP optimization context

P . Then if the cutting plane method used is lift-and-
project applied to a fractional component ofz′ = ϕ (x′)
(definition 4), the cutting plane generated by algorithm
1 separates(x′, y′) from P ′.

Proof: Let z′ ∈ [0, 1]m such thatz′ = ϕ (x′). Since
x′ /∈ Zn, ∃i′ such thatx′

i′ /∈ Z. Letj′ = ⌊xi′⌋+1, there-

fore z′j
′

i′ /∈ {0, 1}. Then, we apply the lift-and-project

convexification procedure to variablezj′

i′ of polyhedron
P01, and obtain a new polyhedron denotedP̂01 as be-
fore. i.e.P̂01 =

conv
({

P01 ∩
{

zj′

i′ = 0
}}

∪
{

P01 ∩
{

zj′

i′ = 1
}})

=
{

(z, y) ∈ Rm × Rp
∣

∣

∣
Âz + B̂y ≥ ĉ

}

Let E = { (z, y)|x′ = Tz, Dz ≥ 0, y′ = y} andP ∗ =
{(Tz, y)}(z,y)∈P̂01

, the projection ofP̂01 through T .
We will prove that(x′, y′) /∈ P ∗, which implies that
E ∩ P̂01 = ∅.

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 43

Let (x, y) ∈ P ∗. ∃ (z, y) ∈ P̂01 such thatx = Tz.
SinceP̂01 (P01, (z, y) ∈ P01 thereforeATz + By =
Ax + By ≥ c and (x, y) ∈ P . Thus P ∗ ⊆ P . By
contradiction, suppose(x′, y′) ∈ P ∗. Since(x′, y′) is a
vertex ofP and(x′, y′) ∈ P ∗, (x′, y′) is a vertex ofP ∗.

From the definition of̂P01, we deduce∀ (z, y) ∈ P̂01,

∃ (z0, y0) ∈
{

P01 ∩
{

zj′

i′ = 0
}}

and (z1, y1) ∈
{

P01 ∩
{

zj′

i′ = 1
}}

and λ ∈ [0, 1], such that

(z, y) = λ (z0, y0) + (1− λ) (z1, y1). In particular,
∀ (z, y) ∈ P̂01 such that(Tz, y) = (x′, y′), (therefore
y = y′), let x0 = Tz0 and x1 = Tz1. We there-
fore have(x0, y0) ∈ P ∗ and (x1, y1) ∈ P ∗. Hence,
λ (x0, y0) + (1− λ) (x1, y1) = (Tz, y′) = (x′, y′) ∈
P ∗. Since(x′, y′) is a vertex ofP ∗, λ ∈ {0, 1}, and
x′ = x0 or x′ = x1.

Supposex′ = x0. Since(z0, y0) ∈ {P01 ∩ {z
j′

i′ =

0}}, using the ordering constraints on variableszj
i in

the strong non-compact reformulation, which are there-
fore verified in P̂01 (P01, in one hand∀j > j′,
zj
0,i′ = 0 ≤ z′ji′ , and in another hand, sincez′j

′−1
i′ = 1,

∀j < j′, z′ji′ = 1 ≥ zj
0,i′ . Finally, z′j

′

i′ > 0 = zj′

0,i′ .

Therefore,x0,i′ = (Tz0)i′ =
∑bi′

j=1 zj
0,i′ ≤ j′ − 1 <

∑bi′

j=1 z′ji′ = (Tz′)i′ = x′
i′ , so x′ 6= x0, which is in-

consistent. Similarly if we supposex′ = x1, we show
show thatx1,i′ ≥ j′ > x′

i′ which is also inconsistent.
Therefore(x′, y′) /∈ P ∗, E ∩ P̂01 = ∅ and we conclude
using proposition 8.

It thus follows from the above proposition 9 that when
our proposed strong non-compact reformulation is used,
and when we are looking to separate a vertex ofP not
belonging toP ′, only one application of the lift-and-
project convexification procedure to the binary reformu-
lation of the polyhedron (see definition 5) is required to
obtain a valid inequality separating the chosen vertex
of P from P ′. As illustrated in the next section through
examples, this property is a key advantage of the strong
non-compact reformulation, and is not shared by the
other suggested reformulations (definitions 2 and 3). To
a large extent, this property alleviates one of the main
criticisms of the idea of using binary reformulations
stated in [9], namely that the lift-and-project convex-
ification procedure must be applied multiple times in
sequence before obtaining a valid inequality separating
the chosen vertex ofP from P ′.
Remark 10 We remark that, when using the strong
non-compact reformulation, applying the lift-and-
project convexification procedure once to variablezj

i ,

i.e., considering the disjunction:zj
i = 0 or zj

i = 1,
corresponds to the disjunctionxi ≤ j− 1 or xi ≥ j on
variable xi described by Owen and Mehrotra in [8].
The sequential application of such disjunctions onx
cannot systematically permit to obtain the convex hull
P ′ of integer points ofP in a finite number of steps:
the disjunctions must be performed simultaneously to
achieve this goal. On the contrary, the sequential appli-
cation of the lift-and-project procedure to all variables
of P01 leads, after projection, to valid inequalities
definingP ′ (see proposition 3). Naturally, a more re-
alistic sequential application of the lift-and-project
procedure to a few binary variables before projecting,
produces an intermediate result.

As an illustration, letL be a sequence of pairs
(ik, jk)k∈{1,...,K} with ik ∈ {1, . . . , n} and jk ∈

{1, . . . , bi}, describing disjunctions of the form
xik
≤ jk − 1 or xik

≥ jk. Let

P ∗ = conv(
⋂

(i,j)∈L

({(x, y) ∈ P |xi ≤ j − 1}∪

{(x, y) ∈ P |xi ≥ j}))

denote the polyhedron obtained by performing all these
disjunctions simultaneously onP . In one hand,P ∗ can
be described with approximately2K times more con-
straints and variables thanP , which is often intractable.
On the other hand, whileP ∗ cannot be obtained by ap-
plying the disjunctions sequentially, it can be obtained
using the strong non-compact reformulation, sequential
lift-and-project and projection. More precisely, letP01

be the strong non-compact reformulation ofP . Let us
sequentially apply lift-and-project to variableszj

i , for
(i, j) ∈ L. LetQ0 = P01 and∀k ∈ {1, . . . , K} , Qk =

conv({(z, y) ∈ Qk−1|z
j
i = 0}

∪ {(z, y) ∈ Qk−1|z
j
i = 1})

In accordance with the beginning of this remark, the
projection ofQK onto the original space isP ∗. In the
context of cutting plane generation (using problem (3.)
to perform the projection, and only generating a few
facets of the polyhedra involved), this formulation might
be more tractable.

5. Comparison of the strong non-compact reformu-
lation against other binary reformulations

In this section, we compare the strong non-compact
reformulation to other classical reformulations intro-
duced in section 2.. On two examples, we show how

44 Jean-Sbastien Roy – Binarize and Project

cutting plane generation through reformulation progres-
sively yields the convex hull of mixed-integer solutions,
notably in a case where mixed-integer Gomory cuts fail
to do so.

5.1. First example

We consider here the following example due to Cook,
Kannan and Schrijver[6]:

Let P be the polyhedron in variables(x1, x2, y) ∈
R3

+ defined by the constraints:

P = {(x1, x2, y) ∈ R3
+|y ≤ 3x1, y ≤ 3x2,

3x1 + 3x2 + 2y ≤ 6}

Note that the variablesx1 andx2 are implicitly upper
bounded by2.

We are looking for the convex hullP ′ of points I
such thatx1 andx2 are integers, i.e.,I =

(

Z2 × R
)

∩P
andP ′ = conv I.

The vertices of polyhedronP (see figure 1) are the
points:

(x1, x2, y) ∈ {(0, 0, 0), (2, 0, 0), (0, 2, 0), (1
2 , 1

2 , 3
2)}

x1

x2

y

x1

x2

y

P P ′

x1

x2

y

x1

x2

y

P ∗ P ∗∗

Fig. 1. PolyhedraP , P ′, P ∗ andP ∗∗, in cubes 2 units wide

The vertices of polyhedronP ′ (see figure 1) are the
points:

(x1, x2, y) ∈ {(0, 0, 0) , (2, 0, 0) , (0, 2, 0)}

5.1.1. Methodology
To obtainP ′, a first approach would be to apply cut-

ting plane methods such as mixed-integer Gomory cuts.
It can be shown that it is not possible to obtain the con-
vex hull P ′ through the application of a finite number
of mixed-integer Gomory cuts (see [6]).

Alternatively, it is possible to reformulate integer
variablesx1 andx2 into binary variables in order to ob-
tain a polyhedronP01 such that the convex hull of its
integer points can be obtained by applying a finite num-
ber of lift-and-project cuts. We then obtain the polyhe-
dronP ′ through a projection.

We will apply this method with various binary refor-
mulations, including the strong non-compact one pro-
posed here. For each of these reformulations, we will
apply the lift-and-project convexification procedure (see
section 1.) to some or all of the variables, and then
project the polyhedron onto the original space. We will
describe the polyhedra by listing their vertices. In the
case of the application of the lift-and-project convexi-
fication over all the variables, the result will systemati-
cally beP ′ (see section 2.). We are therefore interested
in applying it on a limited subset of the variables. We
remark that the result of the sequential convexification
does not depend on the order of application on the vari-
ables (see for example proposition 4 in [9]).

Let

P ∗ = conv({(0, 0, 0), (2, 0, 0), (0, 2, 0), (1, 1
3 , 1)})

and

P ∗∗ = conv({(0, 0, 0), (2, 0, 0), (0, 2, 0), (1
3 , 1, 1)})

(see figure 1).

5.1.2. Compact reformulation (Owen-Mehrotra)
In the case of the compact reformulation (see def-

inition 2), a disjunction on a variablezj
i : zj

i = 0 or
zj

i = 1, corresponds to a disjunction on a variablexi:
xi ≤ 2j−1 or xi ≥ 2j if j = li andxi ≤ bi, or xi ≥ 2j

if not, which is obviously not very interesting ifj 6= li.
We observe here the behavior described by Owen and
Mehrotra in [9]. In the following, we list the variables
on which the disjunction-convexification procedure is
applied, followed by an arrow (→) and the polyhedron
obtained after projection.

For example,
[

z0
1 , z1

1

]

→ P ∗ means that the poly-
hedronP was reformulated using the compact refor-
mulation into a polyhedronP01. Disjunctions on the
variablesz0

1 and z1
1 are applied onP01 and lead to

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 45

a new polyhedronP̂01, i.e., let Q = conv({(z, y) ∈
P01|z0

1 = 0} ∪ {(z, y) ∈ P01|z0
1 = 1}), then P̂01 =

conv
({

(z, y) ∈ Q
∣

∣z1
1 = 0

}

∪
{

(z, y) ∈ Q
∣

∣z1
1 = 1

})

.
As observed earlier, the resulting polyhedron does not
depend on the order according to which the disjunc-
tions are considered. Similarly, applying the disjunc-
tions sequentially or simultaneously lead to the same
result. The resulting polyhedron̂P01 is then projected
back to the original(x1, x2) space, and in this case,
this projection leads toP ∗ as defined above.

Examining all possible simple disjunctions on vari-
ableszj

i , we obtain:

[

z0
1

]

→ P ,
[

z1
1

]

→ P ;

[

z0
1 , z

1
1

]

→ P ∗,
[

z0
1 , z

0
2

]

→ P ,
[

z0
1 , z1

2

]

→ P ,
[

z1
1 , z

0
2

]

→ P ,
[

z1
1 , z1

2

]

→ P ;

[

z0
1 , z

1
1 , z0

2

]

→ P ∗,
[

z0
1 , z1

1 , z
1
2

]

→ P ∗,
[

z0
1 , z0

2 , z
1
2

]

→

P ∗∗,
[

z1
1 , z0

2 , z
1
2

]

→ P ∗∗;

and obviously

[

z0
1 , z

1
1 , z0

2 , z
1
2

]

→ P
′

.

It is therefore not possible to obtainP ′ without ap-
plying lift-and-project on all binary variables. More-
over, as written in [9], to get any reduction ofP , the
application of lift-and-project must be carried out, be-
fore projection, with respect to all the binary variables
zj

i associated with a given variablexi.

5.1.3. Sherali-Adams non-compact reformulation
In the case of the Sherali-Adams non-compact refor-

mulation (see definition 3), a disjunction on variable
zj

i : zj
i = 0 or zj

i = 1, corresponds to a disjunction
on variablexi: xi ≤ bi − 1 or xi = bi if j = bi and
xi ≤ bi or xi = j otherwise, which is obviously not
very interesting ifj 6= bi.

[

z1
1

]

→ P ,
[

z2
1

]

→ P ;
[

z1
1 , z

2
1

]

→ P ∗,
[

z1
1 , z

1
2

]

→ P ,
[

z1
1 , z2

2

]

→ P ,
[

z2
1 , z

1
2

]

→ P ,
[

z2
1 , z2

2

]

→ P ;
[

z1
1 , z

2
1 , z1

2

]

→ P ∗,
[

z1
1 , z2

1 , z
2
2

]

→ P ∗,
[

z1
1 , z1

2 , z
2
2

]

→

P ∗∗,
[

z2
1 , z1

2 , z
2
2

]

→ P ∗∗.

We observe here the same behavior as with the com-
pact reformulation as these are more or less the same
reformulations in our case.

5.1.4. Weak non-compact reformulation
In the case of the weak non-compact reformulation

(see remark 1), a disjunction on variablezj
i : zj

i = 0 or
zj

i = 1, corresponds to a disjunction on variablexi:
xi ≤ bi− 1 or xi ≥ 1, which does not depend onj and
is obviously not very interesting.

[

z1
1

]

→ P ,
[

z2
1

]

→ P ;
[

z1
1 , z

2
1

]

→ P ∗,
[

z1
1 , z

1
2

]

→ P ,
[

z1
1 , z

2
2

]

→ P ,
[

z2
1 , z

1
2

]

→ P ,
[

z2
1 , z

2
2

]

→ P ;
[

z1
1 , z

2
1 , z1

2

]

→ P ∗,
[

z1
1 , z

2
1 , z2

2

]

→ P ∗,
[

z1
1 , z

1
2 , z

2
2

]

→

P ∗∗,
[

z2
1 , z

1
2 , z2

2

]

→ P ∗∗.

We observe here the same behavior as with the
Sherali-Adams reformulation.

5.1.5. Strong non-compact reformulation
As explained in section 4., in the case of the strong

non-compact reformulation (see definition 4), a dis-
junction on variablezj

i : zj
i = 0 or zj

i = 1, corresponds
to a disjunction on variablexi: xi ≤ j − 1 or xi ≥ j,
which corresponds to the disjunctions described by
Owen and Mehrotra in [8].

[

z1
1

]

→ P ∗,
[

z2
1

]

→ P ;
[

z1
1 , z

2
1

]

→ P ∗,
[

z1
1 , z

1
2

]

→ P ′,
[

z1
1 , z

2
2

]

→ P ∗,
[

z2
1 , z

1
2

]

→ P ∗∗,
[

z2
1 , z

2
2

]

→ P ;
[

z1
1 , z

2
1 , z1

2

]

→ P ′,
[

z1
1 , z2

1 , z
2
2

]

→ P ∗,
[

z1
1 , z

1
2 , z2

2

]

→

P ′,
[

z2
1 , z

1
2 , z2

2

]

→ P ∗∗.

We remark that in the practical case of linear pro-
gramming, since the only vertex with fractional compo-
nents is vertex

(

1
2 , 1

2 , 3
2

)

, lift-and-project would be ap-
plied to variablez1

1 (or symmetricallyz1
2). Afterwards,

by projecting the vertices of the polyhedron obtained
and by keeping only those not inI, the only remaining
vertex is

(

1, 1
3 , 1

)

. Thus, lift-and-project would be ap-
plied to variablez1

2 . We would therefore obtainP ′ after
two convexification steps only.

5.1.6. Remark on disjunctions applied to integer vari-
ables

As explained in remark 10, the sequential applica-
tion of the lift-and-project procedure to the polyhe-
dron P01 provides a better strengthening than the se-
quential application of the disjunctions proposed by
Owen and Mehrotra. As an illustration, on our exam-
ple, four disjunctions are possible:(x1 ≤ 0)∨(x1 ≥ 1),
(x1 ≤ 1)∨ (x1 ≥ 2), and similarly forx2. The sequen-

46 Jean-Sbastien Roy – Binarize and Project

tial application of these four disjunctions, whatever the
order, repeated any number of times, does not lead to
the convex hull of mixed-integer solutions to the prob-
lem. On the contrary, the sequential application of the

disjunctions of the form
(

zj
i = 0

)

∨
(

zj
i = 1

)

in the

binary reformulation corresponds to the simultaneous
application of the disjunctions(xi ≤ j − 1)∨ (xi ≥ j)
in the original space, which naturally lead to the convex
hull of the mixed-integer solutions to the problem. I.e.,
in our case,

P ′ = conv[({(x1, x2, y) ∈ P |x1 ≤ 0}∪ {(x1, x2, y)

∈ P |x1 ≥ 1}) ∩ ({(x1, x2, y) ∈ P |x2 ≤ 0}

∪ {(x1, x2, y) ∈ P |x2 ≥ 1})]

Whereas, letΠ [·] denote the projection onto the original
space, and let:Q =

conv({(z, y) ∈ P01‖z
1
1 = 0} ∪ {(z, y) ∈ P01|z

1
1 = 1})

ThenP ′ =

Π[conv({(z, y) ∈ Q|z1
2 = 0} ∪ {(z, y) ∈ Q‖z1

2 = 1})]

5.2. Second example

This second example is the one discussed in [9].
We are interested in building the convex hull

P ′ of the integer points of the polyhedronP =
{

x1, x2 ∈ [0, 4]
2
∣

∣

∣
3x1 + 5x2 ≤ 20, 5x1 + 3x2 ≤ 20

}

.

The case of the compact reformulation is detailed in
[9]. The authors show that, firstly, lift-and-project must
be applied on all 6 binary variables of the reformula-
tion to obtainP ′, and secondly that it is necessary to
apply it to at least three binary variables to obtain a
polyhedron whose projection into the original space is
smaller thanP .

In the case of the strong non-compact reformulation
(see 5.1.5.), the application of the lift-and-project pro-
cedure to the various variables results in the following
polyhedra (we apply each time lift-and-project on a ver-
tex of the polyhedron such that its projection into the
initial space does not satisfy integrality constraints):

Let: S′ = {(0, 0) , (4, 0) , (4, 0)}. We have
P ′ = conv (S′).

[

z3
1

]

→ conv
(

S′ ∪
{(

3, 5
3

)

,
(

2, 14
5

)})

[

z3
1 , z2

2

]

→ conv
(

S′ ∪
{(

17
5 , 1

)

,
(

2, 14
5

)})

[

z3
1 , z2

2 , z4
1

]

→ conv
(

S′ ∪
{(

2, 14
5

)})

[

z3
1 , z2

2 , z4
1 , z3

2

]

→ conv
(

S′ ∪
{(

5
3 , 3

)})

[

z3
1 , z2

2 , z4
1 , z3

2 , z2
1

]

→ conv
(

S′ ∪
{(

1, 17
5

)})

[

z3
1 , z2

2 , z4
1 , z3

2 , z2
1 , z4

2

]

→ P ′

Initial polyhedronP After one cut

After two cuts After three cuts

After four cuts After five cuts

After six cuts:P ′

Fig. 2. All stages of the application of the method on the
example from [9]

We observe (see figure 2) that while, to obtainP ′, it
is necessary to apply the method to as many variables
as in the compact reformulation case, each application
leads to a projection nearer to the convex hull than the
previous one, which was not the case with the com-
pact reformulation. Therefore, in accordance with the
methodology described in section 4., it is possible to
stop at any stage of the application of lift-and-project
on the binary variables and go back to the initial for-
mulation while still taking advantage of a strengthening
not necessarily obtainable by applying existing meth-
ods (such as mixed-integer Gomory cuts) on the initial
polyhedron.

5.2.1. Remark on disjunctions applied to integer vari-
ables

The remarks of subsection 5.1.6. also apply here. For
example, the disjunction onz3

1 is equivalent to the dis-
junction (x1 ≤ 2) ∨ (x1 ≥ 3); the sequential disjunc-

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 47

tions on z3
1 then z2

2 are equivalent to the simultane-
ous disjunctions(x1 ≤ 2) ∨ (x1 ≥ 3) and (x2 ≤ 1) ∨
(x2 ≥ 2); while the sequential disjunctions(x1 ≤ 2) ∨
(x1 ≥ 3) then(x2 ≤ 1)∨(x2 ≥ 2) lead to a larger poly-
hedronconv

(

S′ ∪
{(

17
5 , 1

)

,
(

46
17 , 2

)

,
(

2, 14
5

)})

as il-
lustrated on figure 3.

Simultaneous disjunctions Sequential disjunctions

Fig. 3. Difference between the simultaneous and sequen-
tial application of disjunctions(x1 ≤ 2) ∨ (x1 ≥ 3) and
(x2 ≤ 1) ∨ (x2 ≥ 2) on P .

Again, the better efficiency of the sequential disjunc-
tions applied to the binary reformulation comes from the
property that sequential disjunctions on mixed-binary
problems are equivalent to simultaneous disjunctions,
which is not the case for general mixed-integer prob-
lems.

6. Practical experiments

6.1. Implementation in COIN/Cgl

We have implemented the proposed cut generation
through strong non-compact binary reformulation as a
cut generation method for the Cgl library of COIN[7].
This implementation corresponds to the reformulation
into binary variables, then the repeated application of
cut generation methods to the resulting mixed-binary
problem and the application of algorithm 2 to generate
inequalities valid for the original problem. Algorithm 3
provides details on the procedure implemented while
algorithm 4 provides details on the lift-and-project pro-
cedure used by algorithm 3.

At this stage, some implementation problems remain
unsolved and left for future research. Notably, when the
integer variables are unbounded, a preliminary compu-
tation of implied bounds is necessary, and even when
bounds are known, if the allowed range of integer vari-
ables is very large, the number of binary variables in the
reformulation may be too large to be handled easily. A
few suggestions regarding the computational efficiency
are given at the end of this section.

Step 1: Let (x0, y0) be an optimal vertex of the contin-
uous relaxation of problem (1), andv0 its value. We
suppose thatx0 has at least one fractional component.

Step 2: Reformulate into binary variables the integer
variables of the problem to obtain a problem such as:

min
(z,y)∈Rm×Rp

dTz + ey s.t. Âz + B̂y ≥ ĉ (5)

Step 3: Let z0 associated withx0.
Step 4: (Cut generation on the transformed problem.)

(1) Initialization: i← 0
(2) Apply lift-and-project to separate(zi, yi) (i.e.,

algorithm 4 below with z′ = zi and
y′ = yi). Strengthen the polyhedron̂P01 =
{

(z, y) ∈ Rm × Rp
∣

∣

∣
Âz + B̂y ≥ ĉ

}

by modi-

fying matricesÂ, B̂, and vector̂c using the gen-
erated cuts.

(3) i← i + 1
(4) If cuts have been generated, compute an optimal

vertex of the modified problem (5). Let(zi, yi)
be the vertex andvi the optimal value.

(5) As long aszi has at least one fractional com-
ponent, that cuts have been generated during
this step, and thatvi has sufficiently decreased
relatively to vi−1, i.e., |vi−1 − vi| ≤ 0.001 ×
(|vi|+ 1), and/or that the maximum number of
rounds has not been exceeded, go back to step 4
(2).

Step 5: The cuts generated so far where used to
strengthenP01 into P̂01. To finally generate cuts to
strengthenP , using the strengthened reformulation
P̂01, apply algorithm 2 on polyhedron̂P01, starting
from step 2, withx′ = x0 andy′ = y0.

Algorithm 3. Implementation of the cut generation using
binary reformulation

6.2. Application to MIPLIB problems using a lift-and-
project cut generator

We have applied the methodology described above to
MIPLIB[3] problems for which at least one integer vari-
able is not binary. These problems have already been
studied in the context of reformulation into binary vari-
ables in [9].

We have compared the reduction of the integrality gap
obtained through the use of a lift-and-project cut gener-
ator on either the original problem or on its strong non-

48 Jean-Sbastien Roy – Binarize and Project

(1) Let (z′, y′) an optimal vertex ofP01 to be
separated fromP ′

01. We suppose thatz′ has
at least one fractional component. LetJ =
{i ∈ 1, . . . , m |z′i /∈ {0, 1}}, i.e., the set of indices
of binary variables that are fractional at the opti-
mal vertex considered.

(2) For all i ∈ J :
(a) Consider the problemmin(α,β,γ) αz′ +βy′−

γ subject to αz + βy ≥ γ is valid for
conv({(z, y) ∈ P01|zi = 0} ∪ {(z, y) ∈
P01|zi = 1}). See for example [1] for a prac-
tical formulation.

(b) If the minimum of this problem is 0, then
no cut is generated. Otherwise, the problem
is unbounded. Let(α, β, γ) be an unbounded
ray. Thenαz + βy ≥ γ is a cut separating
(z′, y′) from P ′

01.
(3) Return the list of cuts generated during the previ-

ous step. Remark thatP01 is kept unchanged dur-
ing the course of step 2. All the cuts generated by
the above procedure are applied toP01 upon ter-
mination of this step.

Algorithm 4. One round of lift-and-project cut generation

compact reformulation. Lift-and-project is used in the
comparison since it is the only cutting plane approach
for which we can guarantee the generation of separating
inequalities using the proposed procedure (see proposi-
tion 9). In both cases, 5 rounds of sequential lift-and-
project cut generation are applied to all fractional bi-
nary variables. I.e., algorithm 4 is applied to an opti-
mum vertex of a polyhedronP01; the generated cuts are
added toP01; an optimal vertex of the new polyhedron
is obtained; then algorithm 4 is applied again, and so
on, five times successively. In the binary reformulation
case, the resulting cuts are then projected using the algo-
rithm 2. The problemnoswot has been omitted since
it does not present any integrality gap. Table 1 presents
the characteristics of the problems in terms of number
of continuous, binary and general integer variables, as
well as the number of binary variables added by the
reformulation of general integer variables. In this im-
plementation, we choose to avoid reformulating general
integer variables whose definition interval is larger than
500. Such variables would create a considerable num-
ber of binary variables (32000 in the case ofbell3a
and 94600 in the case ofbell5), which should be bet-
ter handled by either reformulating a subset of the defi-
nition interval, or some implied bounds computation to

reduce the definition interval. Moreover, it seems intu-
itively that in most problems, given the finite precision
of the computational tools involved, integer variables
with large definition intervals behave quite similarly to
continuous variables.

Table 1

Variables
Integer

Problem Continuous Binary Integer as binary

arki001 850 442 96 608
bell3a 62 39 32 0
bell5 46 30 28 600
blend2 89 239 25 66
flugpl 7 0 11 198
gen 720 144 6 144

gesa2 816 240 168 432
gesa2 o 504 384 336 864
gesa3 768 216 168 504
gesa3 o 480 336 336 1008
gt2 0 24 164 1148

qnet1 124 1288 129 675
qnet1 o 124 1288 129 675
rout 241 300 15 30

Number of continuous, binary, general integer non bi-
nary variables of MIPLIB 3.0 problems, as well as the
number of binary variables added by the reformulation
of the general integer variables.

Since no suitable lift-and-project cutting plane gen-
erator is available in Cgl, we developed our own im-
plementation. This implementation is not optimized so
that the only significant performance measurement is
the reduction of the integrality gap at the root node of
the problem. [5] provide the basis for a much more effi-
cient, but highly complex implementation, suitable for
branch-and-cut.

Table 2 presents the results.LP valuecorresponds to
the value of the continuous relaxation ;MIP value to
the optimal value (or in the case ofarki001, the best
integer value known) ;L&P value to the value of the
relaxation after applying lift-and-project (5 rounds) ;
B&P valueto the value of the relaxation after applying
lift-and-project (5 rounds) to the strong non-compact
reformulation (i.e., the result of algorithm 3). Finally,
the improvement corresponds to the difference in value
between the two methods expressed as a percentage
of the integrality gap that remains to be closed after
applying lift-and-project to the original problem, i.e.,
B&P value−L&P value

MIP value−L&P value
. Three problems exhibit no or a

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 49

small improvement, all other problems exhibit signifi-
cant improvements.

Table 3 presents the number of cuts generated by each
method that are tight at the optimum of the strengthened
relaxation. We observe that, given the projection per-
formed after the cut generation on the binary expanded
space, the number of cuts kept in the original space is
comparable with the number of cuts generated without
reformulation.

Table 3

Problem Improvement L&P cuts B&P cuts
(%)

arki001 18.7 58 65
bell3a 0 10 8
bell5 0.4 13 6
blend2 20.8 15 7
flugpl 13.1 0 7
gen 4.1 64 33

gesa2 24.3 54 79
gesa2 o 47.8 65 90
gesa3 94.0 34 87
gesa3 o 94.1 30 86
gt2 92.7 0 14

qnet1 34.1 30 25
qnet1 o 69.4 0 31
rout 8.8 37 38

Comparison of the number of cuts tight at the optimum
of the strengthened relaxation, between L&P and B&P,
using 5 rounds of lift-and-project on the MIPLIB 3.0
problems (column “Improvement” reproduced from ta-
ble 2).

Finally, table 4 presents the computing times of each
method obtained on a 1280 MHz Sun UltraSPARC III,
using CPLEX 9.0 as the underlying linear solver. We
observe that, the computing times are most of the time
significantly higher for B&P than for L&P, which is a
consequence of the much larger programs generated by
the reformulation in our preliminary implementation.
Nevertheless, we believe these computing times are not
representative of a real-world implementation. Indeed,
many methods can be devised to improve the numerical
efficiency:
(1) Sophisticated implementations of lift-and-

project[1,2] ignore all variables that are at a bound
in the continuous relaxation solution, greatly re-
ducing the cutting plane generation problem size.
In our case, the solution to the reformulated prob-
lem associated (see definition 4) with the optimal
solution to the continuous relaxation will have

the same number of fractional variables as the the
optimal solution to the continuous relaxation. The
cutting plane generation problem will therefore
initially be of the same size as without reformula-
tion. Subsequent rounds of lift-and-project do not
share this property, and the number of fractional
variables will increase: care should be taken to
ensure the optimal solutions of the strengthened
continuous relaxation of the reformulated problem
are chosen among the many possible equivalent
ones as having as much binary variables at bounds
as possible, for example by introducing a bias
in the objective such asǫ

∑n
i=1

∑bi

j=1 jzj
i , for ǫ

small enough or by solving an additional small
optimization problem. I.e., let(z′, y) an optimal
solution to the strengthened continuous relaxation
of the reformulated problem. Before performing
another lift-and-project round, we might want
to choose another solution(z, y) that minimize
∑n

i=1

∑bi

j=1 jzj
i subject to the cutting planes

generated so far, and the constraintTz = Tz′.
(2) Only a subset of the general integer variables could

be reformulated, and, for variables with large def-
inition intervals, only a subset of the definition in-
terval, around the solution to the continuous relax-
ation, could be reformulated.

(3) And finally, computing times would be signifi-
cantly reduced and probably also much less im-
pacted by the problem size increase induced by the
reformulation, if an efficient lift-and-project im-
plementation, such as the one described in [5] was
used2 .

To conclude this experimentation, the use of the pro-
posed cut generation procedure, while computationally
heavy, avoids applying branch-and-bound to the binary
problem, and does not lead to larger programs. On the
contrary, as observed in [9], the use of binary refor-
mulation alone creates a considerable amount of vari-
ables negatively impacting the time required to solve
the problem.

This limited experiment demonstrates the ability to
take advantage of cutting plane approaches dedicated to
binary problems, such as lift-and-project, in the context
of general integer variables. Nevertheless, much work
remains to create an efficient implementation of this
technique.

2 No such implementation is currently available to the author.

50 Jean-Sbastien Roy – Binarize and Project

Table 2

Problem LP value MIP value L&P value B&P value Improvement (%)

arki001 7579599.8 7580813* 7579599.8 867726.15 18.7
bell3a 862578.64 878430.32 867726.15 867726.13 0
bell5 8608417.9 8966406.5 8906426.9 8906662.9 0.4
blend2 6.9156751 7.598985 7.1681526 7.2577345 20.8
flugpl 1167185.7 1201500 1167185.7 1171670 13.1
gen 112130.04 112313 112248.4 112251.02 4.1

gesa2 25476490 25779856 25591179 25637000 24.3
gesa2 o 25476490 25779856 25591200 25681342 47.8
gesa3 27833632 27991043 27851253 27982605 94.0
gesa3 o 27833632 27991043 27851253 27982741 94.1
gt2 13460.233 21166 13460.233 20603.861 92.7

qnet1 14274.103 16029.693 14458.939 14993.899 34.1
qnet1 o 12095.572 16029.693 12095.572 14824.597 69.4
rout 981.86429 1077.56 996.478 1003.6282 8.8

Comparison of the strengthened relaxation value, between L&P and B&P,
using 5 rounds of lift-and-project on the MIPLIB 3.0 problems.

Table 4

Problem Improvement L&P time B&P time
(%) (sec.) (sec.)

arki001 18.7 1237 16877
bell3a 0 1 1
bell5 0.4 1 37
blend2 20.8 7 10
flugpl 13.1 1 13
gen 4.1 50 143
gesa2 24.3 27 261
gesa2 o 47.8 28 354
gesa3 94.0 13 900
gesa3 o 94.1 11 976
gt2 92.7 1 42
qnet1 34.1 1768 6691
qnet1 o 69.4 1 991
rout 8.8 146 135

Comparison of the computing times, in seconds, between
L&P and B&P, using 5 rounds of lift-and-project on
the MIPLIB 3.0 problems (column “Improvement” repro-
duced from table 2).

7. Conclusion

We have proposed a practical approach of cut gener-
ation through binary expansion using a specific refor-
mulation into binary variables, called here the “strong
non-compact reformulation”, that answers some theo-
retical concerns and limitations raised in [9], namely
the necessity to apply the lift-and-project convexifica-
tion procedure to all binary variables associated with an

integer variable before obtaining a strengthening of the
original problem, a concern answered by proposition 9.
Also, instead of applying branch-and-bound to the bi-
nary reformulation of the problem (which would lead
to poor performance) our approach only uses the bi-
nary reformulation of the problem to find cutting planes
to strengthen the original problem (in general integer
variables) to which branch-and-bound is subsequently
applied.

The implementation of our approach, combined with
sequential lift-and-project, results in reduced integrality
gaps for some problems, with no significant increase in
the number of generated cutting planes. This suggests
that the generation of cuts from the strong non-compact
reformulation of the problem might be an interesting
method in some cases.

While lift-and-project is the only cutting planes ap-
proach for which we can guarantee the generation of
separating inequalities, it might be interesting to com-
bine our methodology with other cutting planes ap-
proaches, particularly those dedicated to binary prob-
lems, to somehow extend them to the general integer
variables case.

Other possible research directions include studying
the relationship between the cuts resulting from apply-
ing disjunctive programming to the original (non bi-
nary) problem and those resulting from applying lift-
and-project on the strong non-compact reformulation.
A comparison between these two cutting plane genera-
tion approaches, both from a theoretical and a numeri-

Jean-Sbastien Roy – Algorithmic Operations Research Vol.2(2007) 37–51 51

cal point of view, will be the subject of future research.

References

[1] E. Balas, S. Ceria, and G. Cornujols,A lift-and-project
cutting plane algorithm for mixed 0-1 programs,
Mathematical Programming58 (1993), pp. 295–323.

[2] E. Balas, S. Ceria, and G. Cornujols,Mixed 0-1
programming by lift-and-project in a branch-and-cut
framework, Management Science42 (1996), no. 9,
1229–1246.

[3] R. E. Bixby, S. Ceria, C. M. McZeal, and
M. W. P. Savelsbergh,An updated mixed integer
programming library: MIPLIB 3.0, Technical Report
TR98-03, Department of Computational and Applied
Mathematics, Rice University, 1996.

[4] P. Bonami, Étude et mise en œuvre d’approches
polydriques pour la rsolution de programmes en
nombre entiers ou mixtes gnraux, Ph.D. thesis,
Universit Paris VI, 2003.

Received 9 May 2006; revised 19 October 2006; accepted 21
November 2006

[5] E. Balas and M. Perregaard,A precise correspondence
between lift-and-project cuts, simple disjunctive cuts,
and mixed integer gomory cuts for 0-1 programming,
Math. Program., Ser. B94 (2003), 221–245.

[6] W. J. Cook, R. Kannan, and A. Schrijver,Chvtal
closures for mixed integer programming problems,
Mathematical Programming47 (1990), 155–174.

[7] R. Lougee-Heimer, F. Barahona, B. Dietrich, J. P.
Fasano, J. Forrest, R. Harder, L. Ladanyi, T. Pfender,
T. Ralphs, M. Saltzman, and K. Schienberger,
The COIN-OR initiative: Open-source software
accelerates operations research progress, ORMS
Today28 (2001), no. 5, 20–22.

[8] J. Owen and S. Mehrotra,A disjunctive cutting plane
procedure for general mixed-integer linear programs,
Mathematical Programming89 (2001), no. 3, pp. 437–
448.

[9] , On the value of binary expansions for general
mixed-integer linear programs, Operations Research
50 (2002), no. 5, pp. 810–819.

[10] H. D. Sherali and W. P. Adams,A reformulation
linearization technique for solving discrete and
continuous nonconvex problems, ch. 4, Kluwer,
Boston, MA, 1999.

