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The Greedy Algorithm for the Symmetric TSP

Gregory Gutir  Anders Yed
2Department of Computer Science, Royal Holloway, Univgreit London, Egham, Surrey TW20 0EX, UK.

Abstract

We corrected proofs of two results on the greedy algorithntHfe Symmetric TSP and answered a question in Gutin
and Yeo, Oper. Res. Lett. 30 (2002), 97-99.
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1. Introduction out that anti-matroids defined in [4] form a combinato-
rial structure different to the one with same name used

Many combinatorial optimization problems can be in some papers, see, e.g., [2].)
formulated as follows [7]. We are given a p&it, F), Both Proposition 1 and Theorem 2 answer an open
whereE is a finite set andF is a family of subsets of  question in [4] to provide a well-studied combinato-
E, and a weight functior: that assigns a real weight  rial optimization problem which is an anti-matroid, but
c(e) to every element ofs. The weightc(S) of S € F not an/-anti-matroid. Another proof that STSP is anti-
is defined as the sum of the weights of the elements matroid is given in [1], but the proof there is indirect and
of S. It is required to find a maximal (with respect to relatively long. Our proof of Theorem 2 is also of inter-
inclusion) setB € F of minimum weight. Thegreedy est since it can be used to correct the proof of Theorem
algorithm starts from an element of’ of minimum 4.3 in [1] (see Theorem 3) for STSP, which is incorrect
weight that belongs to a set j. In every iteration the  due to the fact that STSP is not &ranti-matroid. (The
greedy algorithm adds a minimum weight unconsidered proof of Theorem 4.3 in [1] is correct for ATSP.) Notice
elemente to the current seX providedX U {e} is a that the result of Theorem 3 is stronger (by a factor of
subset of a set itF. n) than Theorem 4.3 in [1] for STSP.

The sequence [5,4,1] of papers studied the greedy |Interestingly, there are numerous STSP heuristics
algorithm for the Asymmetric and Symmetric Travel- which always find a tour that is better than a large
ing Salesman Problems (ATSP and STSP) and wide number of other tours, see, e.g., [5,6].
classes of combinatorial optimization problems thatin-  ap anti-matroidis a pair(E, F) such that there is an
clude both TSPs. It was proved in [5] that for each assignment of weights to the elementsmfor which
n > 3, there is an instance of ATSP on vertices  the greedy algorithm for finding a maximal setin
for which the greedy algorithm produces the unique of minimum weight constructs the unique maximal set
worst possible solution. In [4] we introduced a wide of maximum weight.
class of optimization problems, which we called anti- 5, I-independence familis a pair consisting of a
matroids (they are defined later), for which the greedy finite setZ and a familyF of subsets (callethdepen-

algorithm similarly fails. The Assignment Problem and dent setsof E such that (11)-(13) are satisfied
ATSP were proved to be anti-matroids by showing that '

they belong to a special family of anti-matroids- (
anti-matroids, also defined later). Erroneously, we also
claimed that STSP is also dranti-matroid. However,
this is not true as we show in Proposition 1 of this pa-
per. We also prove, in Theorem 2, that STSP is an anti-
matroid by giving a direct proof. (It is worth pointing

(11) the empty set is iF;

(12) If X € F andY is a subset ofX, thenY € F;

(13) All maximal sets ofF (called base$ are of the
same cardinalityt.

If S e F, thenletI(S) = {z: SU{z} € F} - 5.

This means thaf (S) contains all elements (different

from S), which can be added t6, in order to have an

Email: Gregory Gutin [gutin@cs.rhul.ac.uk], Anders Yeo [an- independent set. Ad-independence familyE, F) is

ders@cs.rhul.ac.uk]. an I-anti-matroidif
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(14) There existsabas®’ € F, B'={x1,z2,...,zx}
such that the following holds for every basee F,
B+ B,

k—1
> (zy,72,...,25) N Bl < k(k+1)/2.
=0

Consider STSP on vertices,n > 3. We recall that
STSP is the problem of finding a minimum weight
Hamilton cycle in a weighted complete graph,. We
view STSP as ar-independence family whose inde-
pendent sets are collections of disjoint pathggfand
Hamilton cycles ink,,. We will represent independent
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j =mn—1, sonow assume that< j < n—1, and note
that all edges of” belong tol (ey, es, ..., €;), except for
those with one end-vertex ifi = {2,3,...,j} and the
edge{l,j + 1}. Let Q; denote the set of edges ih
with at least one end-vertex ih. Let m; denote the
number of edges ifi" in which both end-vertices belong
to the setJ and observe thg,| = 2(j — 1) — m;
(since each vertex iy has degree 2 il" and every
edge ofT" between vertices iy 'cancels’ one degree
unit). Observe thatn; < j — 2, which implies that
[I(e1,e2,....,e;) NT| < n—|Q;| =n—2(j—1)+m; <
n-—7.

Now let ab be an edge i’ such thata < b —

sets of STSP as sets of their edges. We denote the verl < n — 1 anda is as small as possible. Observe

tices of K, 1,2,...,n and call Hamilton cycletours.

2. Results

Proposition 1 For n > 4, STSP is not an/-anti-
matroid.

Proof: LetT’ = {e1,ea,...,en}, Wheree; = {i,i+1}
fori < n ande, = {n,1}. Let T = T' U {f1, f3} —
{e1,e3}, where f; = {1,3} and f3 = {2,4}. Since
we can conside¥’ as an arbitrary tour (i.e., a base) of
STSP, if STSP was ah-anti-matroid, we would have

n—1
> (ersez,. . e) NT| < n(n+1)/2.
j=0

However|T'| = |I(e1)NT| = n,|I(e1,e2)NT| = n—3,
and|I(ei,e2,...,e;) NT| = n— j for eachj > 3.
Hence,zg?;ol |I(e1,e2,...,e;)NT| =n(n+1)/2.

Theorem 2 STSP is an anti-matroid.

Proof: LetT’ = {ey,...,e,} be the tour, where; =
{i,i+1} for i < n ande,, = {n, 1}. We first show the
following:

Claim A: For every toufl’ # T", we have the follow-

ing:

= n(n—1) if ey T
I(e1,eq,...,e;,)NT|< 2 oot
;' (61 €2 63) |—{ n(n2—l) —1ife eT

Proof of Claim A:We will first prove that|I (e, e,
—.,e;)NT| <n—jforallj =0,1,2,...,n—1, except
fore; ¢ T andj = 1, in which casdl(e;) N T| = n.
This statement is clearly true when= 0, j = 1 and

that ab exists sincel” # T. If a = 1 then we have
[I(e1,ea,...;ep—1)NT| <n—(b—1)—1,aSab & Qp_1,
butab & I(e1,ea,...,ep—1)NT. If a > 1 thenl23...a
is a path inT" andm,1(a + 1) — 3 ase, ¢ T. Hence,
[I(e1,e2,...;eq41) NT| < n— (a+1)— 1. Therefore
the following holds.

n—1
Z |I(€1,€2, .. .,ej) ﬂT|
=0

n+m—-1)+>" (n—j)—11ifeeT

j=2

S{(n+n+2;?_21(71—9)—1 if ey ¢ T

This proves Claim A.
Now let M > n and assign weights to the edges of
K,, as follows:

cler) =2M

c(e;) =tM foralli > 2 (1)

cle)=14+jMife¢T' ec I(er,e2,...,€j-1)
bute & I(e1,e2,...,¢€;)

Observe that(e) > 2M for eache. By this remark
and the definition of costs, the greedy algorithm con-
structsT” and¢(T’) = Mn(n+1)/2+ M.

Let T = {f1, fo,..., fn} be an arbitrary tour dis-
tinct fromT”. By the choice of: made above, we have
that ¢(f;) € {a;M,a;M + 1} for some positive inte-
ger a;. First assume thaf; # e, in which casef; €
1(81, €9,. .. ,Baifl) bUth g 1(81, €9,... ,Bai). There-
fore f; € I(e1,es,...,e;)NT exactly whery < a;—1,
which implies thatf; is countedz; times in the sum in
Claim A. So ife; ¢ T then, by Claim A, the following
holds:
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1
n+1 HX:|I€1,62,..., YNT| = X:aZ

Since

o(T) <Y " (aiM+1) < Mn(n+1)/2+n < c(T"),
we are done in the case when ¢ T'. If f; = e; then
a;, =2andf; € I(e,es,...,e;)NT only whenj = 0,
which, by Claim A, implies the following:

n—1
1
#—1>Z|I 61,82,...,6j)mT|
7=0

- (Z) Y

As above we note that(T) < > " ;(a;M + 1) <
Mn(n+1)/24n < ¢(T"), which completes the proof.

Theorem 3 For each evem > 4 there exists an in-

|
stance of STSP that ha(g((ilg'

each of which is at leasf(n ) times shorter than the
unique worst tour, wherg(n) > 1 is an arbitrary func-
tion in n, and yet the greedy algorithms produces the
unigue worst tour.

) optimal tours,

Proof: Let K, be a complete graph on vertices

{1,2,...,n} and let edge{i,i + 1} be denoted by
e; fori = 1,2,...,n, wheren + 1 = 1. Then
T = {ey,e2,...,e,} IS a base. Assign weightge)

for each edge: of K, as in the proof of Theorem
2, see (1), withM > n. It is proved in Theorem 2
that T’ is the unique heaviest tour i&,; let P(n)
be the weight ofl”. Let L = {2,3,...,% + 1} and
R={%+2,%+3,...,n} U{1}. We define the new
weights of edges of K,, as follows:w(e) = c(e)
unless both end-vertices efare in R, in which case
w(e) = cle) + f(n) P(n).

Clearly, the greedy algorithm construct$ and 7"
remains the unique heaviest tourfdf,. Let .4 be the set
of all tours alternating betweeh and R and contain-
ing the edge’ = ¢, /211 and not containing the edge
e” = e;. Observe that for each tou¥ in A, we have
w(T")/w(H) > f(n). It remains to prove that every
H € Ais an optimal tour and

(n—1)!

Al =T,

Let A’ be the set of tours alternating betwekrand
R and containing the edgé. Let A" be the set of tours
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in A’ containinge”. Clearly, A = A"\ A”. LetG be the
induced subgraph dk’,, obtained fromk,, by deleting
the verticesg + 1 and 5 + 2. Observe that there are
[(n/2 — 1)!]? Hamilton paths inG. Each such pati®
can be transformed into a tour Ity, by adding the edge
¢’ and two more edges linking the end-vertices(pf
with the end-vertices of’. Thus,|A’| = [(n/2 — 1)!]2.
Observe that there arfén/2 — 2)!)? tours alternating
betweenL and R and containing the edge’ in the
graphG. To form a tour containing’, ¢’ in K,, from a
tour C containinge” in G, it suffices to insert the edge
e’ into C' such thaie” remains in the tour. This can be
done inn—3 ways. Hencel A" | = [(n/2—2)!)?(n—3).
So, we obtain that

|A] = |A'| - A"
9 (n—1)!
(/2 121 - o(1)) = (=)

Let H # H' € A. Observe that every toW¥' not al-
ternating betweerl. and R must contain an edge with
both end-vertices ink. This, by the definition ofw,
implies thatw(H) < w(C). Let C' be a tour alter-
nating between. and R, but not in.A. To prove that
w(H) = w(H'") < w(C), we addM to the weight of
each edge incident to the vertex 1. Now observe that
the sum of the weights of two edges@fincident to a
vertexi € L equals2iM + 2 provided none of the two
edges coincides with’ or ¢”. Includinge’ into C, we
decrease the weight @f by one and including” we
increase it byM. Thus,w(H) = w(H') < w(C).
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